

USN

Internal Assessment Test 3 – July 2022

Sub: Software Testing-Scheme and Solutions Sub Code:
18IS62

Branch: ISE

Date: 8/07/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Write a short note on i) Quality and Process ii) Test and analysis iii) Risk planning

iv) Monitoring the process v) Improving the process.

Quality and Process [2 marks]

Explanation:2 marks

Test and analysis [2 marks]

Test:1 mark

Analysis: 1 mark

Risk planning [2 marks]

Explanation:2 marks

Monitoring the process [2 marks]

Explanation:2 marks

Improving the process [2 marks]

Explanation:2 marks

Quality and process

• One can identify particular activities and responsibilities in a software

development process that are focused primarily on ensuring adequate

dependability of the software product, much as one can identify other

activities and responsibilities concerned primarily with project schedule or

with product usability.

• It is convenient to group these quality assurance activities under the rubric

"quality process," although we must also recognize that quality is intertwined

with and inseparable from other facets of the overall process.

• Like other parts of an overall software process, the quality process provides a

framework for selecting and arranging activities aimed at a particular goal,

while also considering interactions and trade-offs with other important goals.

• All software development activities reflect constraints and trade-offs, and

quality activities are no exception.

Test

• Despite the attractiveness of automated static analyses when they are

applicable, and despite the usefulness of manual inspections for a variety of

documents including but not limited to program source code, dynamic

testing remains a dominant technique.

• Dynamic testing is really divided into several distinct activities that may

occur at different points in a project.

Analysis

• Analysis techniques that do not involve actual execution of program source

code play a prominent role in overall software quality processes.

[10] CO5 L1

• Manual inspection techniques and automated analyses can be applied at any

development stage. They are particularly well suited at the early stages of

specifications and design, where the lack of executability of many

intermediate artifacts reduces the efficacy of testing.

Risk planning

• Risk is an inevitable part of every project, and so risk planning must be a part

of every plan.

• Risks cannot be eliminated, but they can be assessed, controlled, and

monitored.

• The duration of integration, system, and acceptance test execution depends to

a large extent on the quality of software under test. Software that is

sloppily constructed or that undergoes inadequate analysis and test before

commitment to the code base will slow testing progress.

• Even if responsibility for diagnosing test failures lies with developers and not

with the testing group, a test execution session that results in many failures

and generates many failure reports is inherently more time consuming than

executing a suite of tests with few or no failures.

Monitoring the process

• The quality manager monitors progress of quality activities, including results

as well as schedule, to identify deviations from the quality plan as early as

possible and take corrective action.

• Effective monitoring, naturally, depends on a plan that is realistic, well

organized, and sufficiently detailed with clear, unambiguous milestones and

criteria. We say a process is visible to the extent that it can be effectively

monitored.

• Successful completion of a planned activity must be distinguished from mere

termination, as otherwise it is too tempting to meet an impending deadline by

omitting some planned work.

Improving the process

• While the assembly-line, mass production industrial model is inappropriate

for software, which is at least partly custom-built, there is almost always some

commonality among projects undertaken by an organization over time.

• The quality process, as well as the software development process as a whole,

can be improved by gathering, analyzing, and acting on data regarding faults

and failures.

• The goal of quality process improvement is to find cost-effective

countermeasures for classes of faults that are expensive because they occur

frequently, or because the failures they cause are expensive, or because, once

detected, they are expensive to repair.

2 Explain about quality goals and quality team in detail.

Quality goals explanation: 5Marks

Quality team explanation: 5Marks

Quality goals

• Process visibility requires a clear specification of goals, and in the case of

quality process visibility this includes a careful distinction among

[10] CO4 L2

dependability qualities. A team that does not have a clear idea of the

difference between reliability and robustness, for example, or of their relative

importance in a project, has little chance of attaining either.

• Correctness: The degree to which a system is free from [defects] in its

specification, design, and implementation.

• Robustness: The degree to which a system continues to function in the

presence of invalid inputs or stressful environmental conditions.

• Reliability: The ability of a system to perform its requested functions under

stated conditions whenever required - having a long mean time between

failures.

• Goals must be further refined into a clear and reasonable set of objectives. If

an organization claims that nothing less than 100% reliability will

suffice, it is not setting an ambitious objective.

• Rather, it is setting no objective at all, and choosing not to make reasoned

trade-off decisions or to balance limited resources across various activities. It

is, in effect, abrogating responsibility for effective quality planning, and

leaving trade-offs among cost, schedule, and quality to an arbitrary, ad hoc

decision based on deadline and budget alone.

• The relative importance of qualities and their relation to other project

objectives varies. Time-to-market may be the most important property

for a mass market product, usability may be more prominent for a Web

based application, and safety may be the overriding requirement for a

life-critical system.

Quality team

• The quality plan must assign roles and responsibilities to people. As with

other aspects of planning, assignment of responsibility occurs at a strategic

level and a tactical level.

• The tactical level, represented directly in the project plan, assigns

responsibility to individuals in accordance with the general strategy. It

involves balancing level of effort across time and carefully managing

personal interactions.

• The strategic level of organization is represented not only in the quality

strategy document, but in the structure of the organization itself.

• The strategy for assigning responsibility may be partly driven by external

requirements. For example, independent quality teams may be required by

certification agencies or by a client organization.

• Additional objectives include ensuring sufficient accountability that quality

tasks are not easily overlooked; encouraging objective judgment of quality

and preventing it from being subverted by schedule pressure; fostering

shared commitment to quality among all team members; and developing and

communicating shared knowledge and values regarding quality.

• Each of the possible organizations of quality roles makes some objectives

easier to achieve and some more challenging. Conflict of one kind or another

is inevitable, and therefore in organizing the team it is important to recognize

the conflicts and take measures to control adverse consequences. If an

individual plays two roles in potential conflict (e.g., a developer responsible

for delivering a unit on schedule is also responsible for integration testing

that could reveal faults that delay delivery), there must be countermeasures

to control the risks inherent in that conflict.

3a) Discuss about Analysis and Test Plan document in detail.

Analysis [2.5 marks]

Explanation:2.5 marks

Test plan [2.5 marks]

 Explanation:2.5 marks

Analysis

• Analysis techniques that do not involve actual execution of program source

code play a prominent role in overall software quality processes.

• Manual inspection techniques and automated analyses can be applied at any

development stage. They are particularly well suited at the early stages of

specifications and design, where the lack of executability of many

intermediate artifacts reduces the efficacy of testing.

Test plan

• Inspection, in particular, can be applied to essentially any document including

requirements documents, architectural and more detailed design documents,

test plans and test cases, and of course program source code.

• Inspection may also have secondary benefits, such as spreading good practices

and instilling shared standards of quality.

• On the other hand, inspection takes a considerable amount of time and

requires meetings, which can become a scheduling bottleneck.

.

[5] CO4 L2

3b) Explain about the following basic principles of Testing Process Framework i) Sensitivity

ii) Restriction.

Sensitivity: 2.5 Marks

Restriction: 2.5 Marks

Sensitivity

• Human developers make errors, producing faults in software. Faults may lead

to failures, but faulty software may not fail on every execution.

• The sensitivity principle states that it is better to fail every time than

sometimes. Consider the cost of detecting and repairing a software fault. If it

is detected immediately (e.g., by an on-the-fly syntactic check in a design

editor), then the cost of correction is very small, and in fact the line

between fault prevention and fault detection is blurred.

• If a fault is detected in inspection or unit testing, the cost is still relatively

small. If a fault survives initial detection efforts at the unit level, but triggers a

failure detected in integration testing, the cost of correction is much

greater. If the first failure is detected in system or acceptance testing, the cost

is very high indeed, and the most costly faults are those detected by customers

in the field.

Restriction

• When there are no acceptably cheap and effective ways to check a property,

sometimes one can change the problem by checking a different, more

restrictive property or by limiting the check to a smaller, more restrictive

class of programs.

[5] CO4 L2

• Java's solution to this problem is to enforce a stricter, simpler condition: A

program is not permitted to have any syntactic control paths on which an

uninitialized reference could occur, regardless of whether those paths

could actually be executed.

4 Draw the context diagram of the SATM system and explain the same.

Explanation: 5Marks

Diagram: 5Marks

Context diagram:

[10] CO5 L1

Explanation:

• Entity/Relationship diagram of the major data structures in the SATM

system: Customers, Accounts, Terminals, and Transactions. Good data

modeling practice dictates postulating an entity for each portion of the

system that is described by data that is retained (and used by functional

components). Among the data the system would need for each customer

are the customer’s identification and personal account number (PAN);

these are encoded into the magnetic strip on the customer’s ATM card.

We would also want to know information about a customer’s account(s),

including the account numbers, the balances, the type of account (savings

or checking), and the Personal Identification Number (PIN) of the

account.

Upper Level SATM Finite State Machine

• The upper level finite state machine in Figure divides the system into

states that correspond to stages of customer usage. Other choices are

possible, for instance, we might choose states to be screens being

displayed (this turns out to be a poor choice). Finite state machines can be

hierarchically decomposed in much the same way as dataflow diagrams.

The decomposition of the Await PIN state is shown in Figure. In both of

these figures, state transitions are caused either by events at the ATM

terminal (such as a keystroke) or by data conditions (such as the

recognition that a PIN is correct). When a transition occurs, a

corresponding action may also occur. We choose to use screen displays as

such actions; this choice will prove to be very handy when we develop

system level test cases.

PIN Entry Finite State Machine

• If we only use a structure chart to guide integration testing, we miss the

fact that some (typically lower level) functions are used in more than one

place. Here, for example, the Screen Driver function is used by several

other modules, but it only appears once in the functional decomposition.

In the next chapter, we will see that a “call graph” is a much better basis

for integration test case identification. We can develop the beginnings of

such a call graph from a more detailed view of portions of the system. To

support this, we need a numbered decomposition, and a more detailed

view of two of the components.

5 Explain the traditional view of testing levels of waterfall-life cycle with a neat

diagram and rapid prototyping life cycles.

Explanation: 5Marks

Diagram: 5Marks

Diagram:

Explanation:

• The Waterfall Life Cycle Of the three traditional levels of testing (unit,

integration, and system), unit testing is best understood. The testing theory

and techniques we worked through in Parts I and II are directly applicable to

unit testing. System testing is understood better than integration testing, but

both need clarification. The bottom-up approach sheds some insight: test the

individual components, and then integrate these into subsystems until the

entire system is tested. System testing should be something that the customer

(or user) understands, and it often borders on customer acceptance testing.

Generally, system testing is functional rather than structural; this is mostly

due to the absence of a structural basis for system test cases. In the traditional

view, integration testing is what’s left over: it’s not unit testing, and it’s not

system testing. Most of the usual discussions on integration testing center on

the order in which units are integrated: top-down, bottom-up, or the “big

bang” (everything at once).

• Rapid prototyping has interesting implications for system testing. To use the

[10] CO5 L1

prototyping cycle(s) as information gathering activities, and then produce a

requirements specification in a more traditional manner. Another possibility is

to capture what the customer does with the prototype(s), define these as

scenarios that are important to the customer, and then use these as system test

cases. The main contribution of rapid prototyping is that it brings the

operational (or behavioural) viewpoint to the requirements specification

phase. Usually, requirements specification techniques emphasize the structure

of a system, not its behavior. This is unfortunate, because most customers

don’t care about the structure, and they do care about the behavior.

• Executable specifications are an extension of the rapid prototyping concept.

With this approach, the requirements are specified in an executable format

(such as finite state machines or Petri nets). The customer then executes the

specification to observe the intended system behavior and provides feedback

as in the rapid prototyping model.

6a)

Explain the decomposition based integration with an example.

Explanation: 2.5 Marks

Diagram: 2.5 Marks

Explanation:

Integration testing only consider integration testing based on the functional

decomposition of the system being tested. These approaches are all based on the

functional decomposition, expressed either as a tree (Figure) or in textual form. These

discussions inevitably center on the order in which modules are to be integrated.

There are four choices: from the top of the tree downward (top down), from the

bottom of the tree upward (bottom up), some combination of these (sandwich), or

most graphically, none of these (the big bang). All of these integration orders

presume that the units have been separately tested, thus the goal of decomposition

based integration is to test the interfaces among separately tested units.

Diagram:

[5]

CO4

L2

6b) Explain alternative life cycle models.

Explanation: 2.5 Marks

Diagram: 2.5 Marks

Explanation:

• Practitioners have devised alternatives in response to shortcomings of the

traditional waterfall model of software development. Common to all of these

alternatives is the shift away from the functional decomposition to an

emphasis on composition. Decomposition is a perfect fit both to the top-down

progression of the waterfall model and to the bottom-up testing order. One of

the major weaknesses of waterfall development is the over-reliance on this

whole paradigm. Functional decomposition can only be well done when the

system is completely understood, and it promotes analysis to the near

exclusion of synthesis. The result is a very long separation between

requirements specification and a completed system, and during this interval,

there is no opportunity for feedback from the customer. Composition, on the

other hand, is closer the way people work start with something known and

understood, then add to it gradually, and maybe remove undesired portions.

• There are three mainline derivatives of the waterfall model: incremental

development, evolutionary development, and the Spiral model. Each of these

involves a series of increments or builds. Within a build, the normal waterfall

phases from detailed design through testing occur, with one important

difference: system testing is split into two steps, regression, and progression

testing

Diagram:

[5] CO4 L2

