
1. Write a PHP program to do the multiplication of two matrices.

<?php

$a = array(array(1,2,3),array(4,5,6),array(7,8,9));

$b = array(array(7,8,9),array(4,5,6),array(1,2,3));

$m=count($a);

$n=count($a[2]);

$p=count($b);

$q=count($b[2]);

echo "the first matrix :"."
";

for ($row = 0; $row < $m; $row++) {

for ($col = 0; $col < $n; $col++)

echo " ".$a[$row][$col];

echo "
";

}

echo "the second matrix :"."
";

for ($row = 0; $row < $p; $row++) {

for ($col = 0; $col < $q; $col++)

echo " ".$b[$row][$col];

echo "
";

}

echo "the transpose for the first matrix is:"."
"; for ($row = 0; $row < $m; $row++) {

for ($col = 0; $col < $n; $col++)

echo " ".$a[$col][$row];

echo "
";

}

if(($m===$p) and ($n===$q)) {

echo "the addition of matrices is:"."
";

for ($row = 0; $row < 3; $row++) {

for ($col = 0; $col < 3; $col++)

echo " ".$a[$row][$col]+$b[$row][$col]." "; echo "
";

}

}

if($n===$p){

echo " The multiplication of matrices:
";

$result=array();

for ($i=0; $i< $m; $i++) {

for($j=0; $j < $q; $j++){

$result[$i][$j] = 0;

for($k=0; $k < $n; $k++)

$result[$i][$j] += $a[$i][$k] * $b[$k][$j];

}

}

for ($row = 0; $row < $m; $row++) {

for ($col = 0; $col < $q; $col++)

echo " ".$result[$row][$col];

echo "
";

}

}

?>

2. Explain the following object-oriented principles in detail:

(a) Polymorphism (b) Interface

Polymorphism
Polymorphism is the OO concept, where the object can act differently at different

times. Even if the same function name is used.

Overriding of methods in two or more derived classes takes place, the actual method

called will depend on the type of the object. In the below example program, the display

() method is defined in both the derived classes. The method accessed depends on the

object used to access the function.

<?php

Class Student

{
private $name;
public $USN;
public $address;

public $avg;

function construct($n,$usn,$add,$avg)

{
$this->name = $n;

$this->USN= $usn;

$this->address = $add;

$this->avg = $avg;

}

protected function display()

{
echo $this->name;

}

}

class FeeDetails extends Student

{

priva

te

$spo

rts;

priva

te

$aca

demi

c;

function construct($n,$usn,$add,$avg,$s,$ac)

{

parent:: construct($n,$usn,$add,$avg);

$this->sports= $s;

$this->academic= $ac;

}

public function total()

{

$sum= ($this-

>sports)+($this->academic);

echo "total fee is $sum";
}

public function display()

{

parent::display();

$this->total();

}

}

class Scholarship extends Student

{

function construct($n,$usn,$add,$avg)

{

parent:: construct($n,$usn,$add,$avg);

}

public function display()

{

par

ent

::di
spl

ay(
);

ech

o
"N

o
fee

s";

}

}

$f1 = new FeeDetails("Sajeev", "1VA15CS013","Bangalore",66,25000,3000);

$s1=new Scholarship("Amith", "1VA15CS013","Bangalore",66);

$f1->display();

$s1->display();

?>

OUTPUT:
Sajeev total fee is 28000 Amith No fees

The same display() method is invoked by two different objects. First the display()

function of FeeDetails class is invoked and then the display() function of Scholarship
class is invoked.

The run time decision of determining the function to be invoked at run time, is called

dynamic dispatching. Just as each object can maintain its own properties, each object

also manages its own table of methods. This means that two objects of the same type

can have different implementations with the same name.

Object Interfaces
An object interface is a way of declaring a formal list of methods(only) without
specifying their implementation. The class that uses the interface must implement the

declared functions.

Interfaces provide a mechanism for defining what a class can do without specifying

how it does it. Interfaces are defined using the interface keyword. It looks similar to

PHP classes, except an interface contains no properties and its methods do not have

method bodies defined.

Eg -

interface Viewable {

public function

getmessage();

public function

getData();
}

Notice that an interface contains only public methods, and instead of having a method

body, each method is terminated with a semicolon.

In PHP, a class can be said to implement an interface, using the

implements keyword: class FeeDetails extends Student implements

Viewable

{ ... }

This means then that the class ‘FeeDetails’ must provide implementations for the

getmessage() and getData() methods.

Implementing an interface allows a class to become more formal about the behavior it

promises to provide. The same interface can be inherited by more than one class. It

helps in the implementation of multiple inheritance.

PHP allows implementing two or more interfaces. The UML diagram to denote the

interfaces include the <<interface>> stereotype. Classes that implement an interface

are shown to implement using the same hollow triangles as inheritance but with dotted

lines.

Base Class

Student

- name: String

+ USN: String

+ address: String
+ avg: float

+ construct(int, String, String, String)

display(): void

Interface

<<interface>>

Viewable

+ getmessage () : void
+ getData ():void

3. Explain three types of errors and PHP error reporting flags. How are errors different from
exceptions?

Types of Errors
There are three different types of website problems:

• Expected errors
• Warnings
• Fatal errors

An expected error is an error that routinely occurs during an application. The most

common example of this type of error is as a result of user inputs, ie. , entering letters

when numbers were expected. The web application should be developed such that, we

expect the user to not always enter expected values. Users will leave fields blank, enter

text when numbers were expected, type in too much or too little text, forget to click

certain things, and click things they should not etc.

Not every expected error is the result of user input. Web applications that rely on

connections to externalities such as database management systems, legacy software

systems, or web services is expected to occasionally fail to connect. So there should be

some type of logic that verifies the errors in code, check the user inputs and check if it

contains the expected values.

PHP provides two functions for testing the value

of a variable. isset() function - which returns true if

a variable is not null.

empty() function - which returns true if a variable is null, false, zero, or an empty string.

To check a numeric value, use the is_numeric() function, as shown

$id = $_GET['id'];

if (!empty($id) && is_numeric($id)) {

// use the query string since it exists and is a numeric value

...

}

Another type of error is warnings, which are problems that generate a PHP warning

message (which may or may not be displayed) but will not halt the execution of the

page. For instance, calling a function without a required parameter will generate a

warning message but not stop execution. While not as serious as expected errors, these

types of incidental errors should be eliminated by the programmer.

The fatal errors, which are serious in that the execution of the page will terminate

unless handled in some way. These types of errors are exceptional and unexpected,

such as a required input file being missing or a database table or field disappearing.

These types of errors need to be reported so that the developer can try to fix the problem,

and also the page needs to recover gracefully from the error so that the user is not

excessively puzzled or frustrated.

Exceptions

In the context of PHP, error and exception is not the same. An error is some type of

problem that generates a nonfatal warning message or that generates an error message

that terminates the program’s execution. An exception refers to objects that are of type

Exception and which are used in conjunction with the object-oriented try . . . catch

language construct for dealing with runtime errors.

PHP Error Reporting
PHP has a flexible and customizable system for reporting warnings and errors that can

be set programmatically at runtime or declaratively at design-time within the php.ini

file. There are three main error reporting flags:

• error_reporting
• display_errors
• log_errors

Note: PHP.ini is a configuration file, that is used to customize behavior of PHP at

runtime. It consists of settings for different values such as register global variables,

display errors, log errors, max uploading size setting, maximum time to execute a script

and other configurations. When PHP Server starts up it looks for PHP.ini file first to

load various values for settings.

The error_reporting Setting
The error_reporting setting specifies which type of errors are to be reported. It

can be set programmatically inside any PHP file by using the error_reporting()

function: error_reporting(E_ALL);

It can also be set within the php.ini file:

error_reporting = E_ALL

The possible levels for error_reporting are defined by predefined constants(the

default setting is zero, that is, no reporting).

The display_errors Setting
The display_error setting specifies whether error messages should or should not be

displayed in the browser. It can be set programmatically via the ini_set() function:
ini_set('display_errors','0');

It can also be set within the php.ini file:

display_errors = Off

The log_error Setting
The log_error setting specifies whether error messages should or should not be sent
to the server error log. It can be set programmatically via the ini_set() function:

ini_set('log_errors','1');

4. Describe how to modify DOM in jQuery.

Modifying the DOM

jQuery comes with several useful methods to manipulate the DOM elements themselves.

Creating DOM and textNodes

If you decide to think about your page as a DOM object, then you will want to

manipulate the tree structure rather than merely manipulate strings. jQuery is able to

convert strings containing valid DOM syntax into DOM objects automatically.

The jQuery methods to manipulate the DOM take an HTML string, jQuery objects, or
DOM objects as parameters, you might prefer to define your element as

var element = $("<div></div>"); //create new DOM node based on html

This way you can apply all the jQuery functions to the object, rather than rely on pure

JavaScript, which has fewer shortcuts. If we consider creation of a simple <a> element

with multiple attributes, you can see the comparison of the JavaScript and jQuery

techniques.

Prepending and Appending DOM Elements

When an element is defined, it must be inserted into the existing DOM tree. You can

also insert the element into several places at once if you desire, since selectors can

return an array of DOM elements.

The append() method takes as a parameter an HTML string, a DOM object, or a jQuery

object. That object is then added as the last child to the element(s) being selected. In

below figure we can see the effect of an append() method call. Each element with a

class of linkOut has the jsLink element appended to it.

The appendTo() method is similar to append() but is used in the syntactically converse

way. If we were to use appendTo(), we would have to switch the object making the

call and the parameter to have the same effect as the previous code:

jsLink.appendTo($(".linkOut"));

The prepend() and prependTo() methods operate in a similar manner except that they

add the new element as the first child rather than the last.

5. Explain JavaScript pseudo classes such as prototypes, emulating classes with functions,
object literals.

JavaScript Pseudo-Classes

Although JavaScript has no formal class mechanism, it does support objects (such as

the DOM). While most object-oriented languages that support objects also support

classes formally, JavaScript does not. Instead, you define pseudo-classes through a

variety of interesting and nonintuitive syntax constructs. Many common features of

object-oriented programming, such as inheritance and even simple methods, must be

arrived at through these nonintuitive means. Benefits of using object-oriented design

in your JavaScript include increased code reuse, better memory management, and

easier maintenance.

Almost all modern frameworks (such as jQuery and the Google Maps API) use

prototypes to simulate classes, so understanding the mechanism is essential to apply

those APIs in applications.

An object can be instantiated using an object represented by the list of key-value pairs

with colons between the key and value with commas separating key-value pairs.

A dice object, with a string to hold the color and an array containing the values

representing each side (face), could be defined all at once using object literals as

follows:

var oneDie = { color : "FF0000", faces : [1,2,3,4,5,6] };

Once defined, these elements can be accessed using dot notation. For instance, one

could change the color to blue by writing:

oneDie.color="0000FF";

Emulate Classes through Functions

Although a formal class mechanism is not available to us in JavaScript,

it is possible to get close by using functions to encapsulate variables and

methods together, as shown below.

function

Die(col) {

this.color=

col;

this.faces=[

1,2,3,4,5,6]

;

}

The ‘this’ keyword inside of a function refers to the instance, so that every reference

to internal properties or methods manages its own variables, as is the case with PHP.

One can create an instance of the object as follows, very similar to PHP.
var oneDie = new Die("0000FF");

Using Prototypes

Prototypes are an essential syntax mechanism in JavaScript, and are used to make

JavaScript behave more like an object-oriented language. The prototype properties and

methods are defined once for all instances of an object. So modification of the

definition of the randomRoll() method, is done as shown below by moving the

randomRoll() method into the prototype.

// Start

Die Class

function

Die(col) {

this.color

=col;

this.faces

=[1,2,3,4,

5,6];

}

Die.prototype.randomRoll = function() {

var randNum = Math.floor((Math.random() *

this.faces.length) + 1); return faces[randNum-1];
};

// End Die Class

This definition is better because it defines the method only once, no matter how many

instances of Die are created. The below figure shows how the prototype object (not

class) is updated to contain the method so that subsequent instantiations (x and y)

refers that one-method definition. Since all instances of a Die share the same prototype

object, the function declaration only happens one time and is shared with all Die

instances.

A prototype is an object from which other objects inherit.

6. Define Caching and explain page output caching in detail.

Caching is storing the information. Browser uses caching to speed up the

user experience by using locally stored versions of images and other files

rather than re-requesting the files from the server.

Page Output Caching

In this type of caching, the contents of the rendered PHP page(page ready to display

on screen) are written to disk for fast retrieval. This can be particularly helpful because

it allows PHP to send a page response to a client without going through the entire

page processing life cycle again.

Page output caching is especially useful for pages whose content does not change

frequently but which require significant processing to create. There are two models

for page caching: full page caching and partial page caching.

In full page caching, the entire contents of a page are cached. In partial page caching,

only specific parts of a page are cached while the other parts are dynamically generated

in the normal manner.

Page caching is not included in PHP by default, it has to be attached by using add-ons
such as Alternative PHP Cache (open source) and Zend (commercial).

