

Answer Key

Internal Assessment Test 3 – Set 3 – July 2022

Sub: Cloud Computing and its Applications Sub Code: 18CS643 Branch ISE

Date: 11/07/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI / A, B and C OBE

Answer any FIVE questions MARKS CO RBT

1 Explain the Aneka Map Reduce programming model with a neat diagram.

10 CO2 L2

2 Explain SQL Azure architecture with a neat diagram.

 SQL Azure is a relational database service hosted on Windows Azure and

built on the SQL Server technologies. The service extends the capabilities of SQL

Server to the cloud and provides developers with a scalable, highly available, and

fault-tolerant relational database. SQL Azure is accessible from either the Windows

Azure Cloud or any other location that has access to the Azure Cloud. It is fully

compatible with the interface exposed by SQL Server, so applications built for SQL

Server can transparently migrate to SQL Azure. Figure 9.4 shows the architecture

of SQL Azure. Access to SQL Azure is based on the Tabular Data Stream (TDS)

protocol, which is the communication protocol underlying all the different

interfaces used by applications to connect to a SQL Server-based installation such

as ODBC and ADO.NET.

10 CO3 L2

Developers have to sign up for a Windows Azure account in order to use

SQL Azure. Once the account is activated, they can either use the Windows Azure

Management Portal or the REST APIs to create servers and logins and to configure

access to servers.

SQL Azure servers are abstractions that closely resemble physical SQL

Servers: They have a fully qualified domain name under the database.windows.net

(i.e., server-name.database.windows.net) domain name. This simplifies the

management tasks and the interaction with SQL Azure from client applications.

Currently, two different editions are available: Web Edition and Business

Edition. The former is suited for small Web applications and supports databases

with a maximum size of 1 GB or 5 GB. The latter is suited for independent software

vendors, line-of-business applications, and enterprise applications and supports

databases with a maximum size from 10 GB to 50 GB, in increments of 10 GB.

Windows Azure platform appliance

The Windows Azure platform can also be deployed as an appliance on third-

party data centers and constitutes the cloud infrastructure governing the physical

servers of the datacenter. The Windows Azure Platform Appliance includes

Windows Azure, SQL Azure, and Microsoft- specified configuration of network,

storage, and server hardware. The appliance is a solution that targets governments

and service providers who want to have their own cloud computing infrastructure.

Observations

Windows Azure is Microsoft’s solution for developing cloud computing

applications. Azure is an implementation of the PaaS layer and provides the

developer with a collection of services and scalable middleware hosted on

Microsoft datacenters that address compute, storage, networking, and identity

management needs of applications.

The core components of the platform are composed of compute services,

storage services, and middleware. Compute services are based on the abstraction of

roles, which identify a sandboxed environment where developers can build their

distributed and scalable components.

SQL Azure is another important element of Windows Azure and provides

support for relational data in the cloud. SQL Azure is an extension of the

capabilities of SQL Server adapted for the cloud environment and designed for

dynamic scaling.

3 Describe how Cloud Computing can be applied to social networking with a required

diagram.

Social networking applications have grown considerably in the last few years

to become the most active sites on the Web. To sustain their traffic and serve

millions of users seamlessly, services such as Twitter and Facebook have leveraged

cloud computing technologies. The possibility of continuously adding capacity

while systems are running is the most attractive feature for social networks, which

constantly use their user base.

1 Facebook

Facebook is probably the most evident and interesting environment in social

networking. With more than 800 million users, it has become one of the largest

Websites in the world. To sustain this incredible growth, it has been fundamental

that Facebook be capable of continuously adding capacity and developing new

scalable technologies and software systems while maintaining high performance to

ensure a smooth user experience. Currently, the social network is backed by two

data centers that have been built and optimized to reduce costs and impact on the

environment. On top of this highly efficient infrastructure, built and designed out

of inexpensive hardware, a completely customized stack of opportunely modified

and refined open-source technologies constitutes the back-end of the largest social

network. Taken all together, these technologies constitute a powerful platform for

developing cloud applications. This platform primarily supports Facebook itself

and offers APIs to integrate third-party applications with Facebook’s core

infrastructure to deliver additional services such as social games and quizzes

created by others.

The reference stack serving Facebook is based on LAMP (Linux, Apache,

MySQL, and PHP). This collection of technologies is accompanied by a collection

of other services developed in-house. These services are developed in a variety of

languages and implement specific functionalities such as search, news feeds,

notifications, and others. While serving page requests, the social graph of the user

is composed. The social graph identifies a collection of interlinked information that

is of relevance for a given user. Most of the user data are served by querying a

distributed cluster of MySQL instances, which mostly contain key-value pairs.

These data are then cached for faster retrieval. The rest of the relevant information

is then composed together using the services mentioned before. These services are

located closer to the data and developed in languages that provide be These services

are located closer to the data and developed in languages that provide better

performance than PHP.

The development of services is facilitated by a set of internally developed

tools. One of the core elements is Thrift. This is a collection of abstractions (and

language bindings) that allow cross language development. Thrift allows services

developed in different languages to communicate and exchange data. Bindings for

Thrift in different languages take care of data serialization and deserialization,

communication, and client and server boilerplate code. This simplifies the work of

the developers, who can quickly prototype services and leverage existing ones.

Other relevant services and tools are Scribe, which aggregates streaming log feeds,

and applications for alerting and monitoring.

10 CO3 L2

4 Explain the Azure Dynamo architecture with a neat diagram.

The main goal of Dynamo is to provide an incrementally scalable and highly

available storage system. This goal helps in achieving reliability at a massive scale,

where thousands of servers and network components build an infrastructure serving

10 million requests per day. Dynamo provides a simplified interface based on

get/put semantics, where objects are stored and retrieved with a unique identifier

(key).

The architecture of the Dynamo system, shown in Figure 8.3, is composed

of a collection of storage peers organized in a ring that shares the key space for a

given application. The key space is partitioned among the storage peers, and the

keys are replicated across the ring, avoiding adjacent peers. Each peer is configured

with access to a local storage facility where original objects and replicas are stored.

Each node provides facilities for distributing the updates among the rings and to

detect failures and unreachable nodes.

10 CO3 L2

5 What is Data Intensive Computing? Articulate the characteristics of Data Intensive

Computing.

Data-intensive computing is concerned with production, manipulation, and

analysis of large-scale data in the range of hundreds of megabytes (MB) to

petabytes (PB) and beyond.

Dataset is commonly used to identify a collection of information elements that is

relevant to one or more applications. Datasets are often maintained in repositories,

which are infrastructures supporting the storage, retrieval, and indexing of large

amounts of information.

To facilitate classification and search, relevant bits of information, called

metadata, are attached to datasets. Data-intensive computations occur in many

application domains.

Computational science is one of the most popular ones. People conducting

scientific simulations and experiments are often keen to produce, analyze, and

process huge volumes of data. Hundreds of gigabytes of data are produced every

second by telescopes mapping the sky; the collection of images of the sky easily

reaches the scale of petabytes over a year.

Bioinformatics applications mine databases that may end up containing terabytes

of data.

Earthquake simulators process a massive amount of data, which is produced as

a result of recording the vibrations of the Earth across the entire globe.

Characterizing data-intensive computations

Challenges ahead

Historical perspective

1 The early age: high-speed wide-area networking 2 Data grids

3 Data clouds and “Big Data”

4 Databases and data-intensive computing

Characterizing data-intensive computations

Data-intensive applications dealS with huge volumes of data, also exhibit compute-

intensive properties. Figure 8.1 identifies the domain of data-intensive computing in

the two upper quadrants of the graph. Data-intensive applications handle datasets on

the scale of multiple terabytes and petabytes.

10 CO3 L3

6 With a neat diagram, sketch and explain the Google AppEngine platform

architecture.

Google AppEngine is a PaaS implementation

Distributed and scalable runtime environment that leverages Google’s distributed

infrastructure to scale out applications.

Architecture and core concepts
AppEngine is a platform for developing scalable applications accessible through the

Web. Figure 9.2.

The platform is logically divided into four major components: infrastructure, the

runtime environment, the underlying storage, and the set of scalable services.

10 CO2 L3

1 Infrastructure

AppEngine hosts Web applications, and its primary function is to serve users

requests efficiently.

AppEngine’s infrastructure takes advantage of many servers available within

Google datacenters. For each HTTP request, AppEngine locates the servers hosting

the application that processes the request, evaluates their load, and, if necessary,

allocates additional resources or redirects the request to an existing server.

The infrastructure is also responsible for monitoring application performance and

collecting statistics on which the billing is calculated.

2 Runtime environment

The runtime environment represents the execution context of applications hosted

on AppEngine.

Sandboxing- One of the major responsibilities of the runtime environment is to

provide the application environment with an isolated and protected context in which

it can execute without causing a threat to the server and without being influenced

by other applications. In other words, it provides applications with a sandbox.

If an application tries to perform any operation that is considered potentially

harmful, an exception is thrown and the execution is interrupted.

Supported runtimes- Currently, it is possible to develop AppEngine applications

using three different languages and related technologies: Java, Python, and Go.

AppEngine currently supports Java 6, and developers can use the common tools for

Web application development in Java, such as the Java Server Pages (JSP), and the

applications interact with the environment by using the Java Servlet standard.

Support for Python is provided by an optimized Python 2.5.2 interpreter. As with

Java, the runtime environment supports the Python standard library.

Developers can use a specific Python Web application framework, called webapp,

simplifying the development of Web applications.

The Go runtime environment allows applications developed with the Go

programming language to be hosted and executed in AppEngine. Currently the

release of Go that is supported by AppEngine is r58.1. The SDK includes the

compiler and the standard libraries for developing applications in Go and

interfacing it with AppEngine services.

3 Storage

AppEngine provides various types of storage, which operate differently depending

on the volatility of the data. Static file servers- Web applications are composed of

dynamic and static data. Dynamic data are a result of the logic of the application

and the interaction with the user. Static data often are mostly constituted of the

components that define the graphical layout of the application or data files.

DataStore- DataStore is a service that allows developers to store semi-structured

data. The service is designed to scale and optimized to quickly access data. DataStore

can be considered as a large object database in which to store objects that can be

retrieved by a specified key.

DataStore imposes less constraint on the regularity of the data but, at the same time,

does not implement some of the features of the relational model.

The underlying infrastructure of DataStore is based on Bigtable, a redundant,

distributed, and semistructured data store that organizes data in the form of tables.

DataStore provides high-level abstractions that simplify interaction with Bigtable.

Developers define their data in terms of entity and properties, and these are persisted

and maintained by the service into tables in Bigtable.

DataStore also provides facilities for creating indexes on data and to update data within

the context of a transaction. Indexes are used to support and speed up queries. A query

can return zero or more objects of the same kind or simply the corresponding keys.

4 Application services

Applications hosted on AppEngine take the most from the services made available

through the runtime environment. These services simplify most of the common

operations that are performed in Web applications UrlFetch - The sandbox

environment does not allow applications to open arbitrary connections through sockets,

but it does provide developers with the capability of retrieving a remote resource

through HTTP/HTTPS by means of the UrlFetch service. Applications can make

synchronous and asynchronous Web requests and integrate the resources obtained in

this way into the normal request- handling cycle of the application.

UrlFetch is not only used to integrate meshes into a Web page but also to leverage

remote Web services in accordance with the SOA reference model for distributed

applications.

MemCache- This is a distributed in-memory cache that is optimized for fast access

and provides developers with a volatile store for the objects that are frequently

accessed. The caching algorithm implemented by MemCache will automatically

remove the objects that are rarely accessed. The use of MemCache can significantly

reduce the access time to data; developers can structure their applications so that each

object is first looked up into MemCache and if there is a miss, it will be retrieved from

DataStore and put into the cache for future lookups.

Mail and instant messaging- AppEngine provides developers with the ability to send

and receive mails through Mail. The service allows sending email on behalf of the

application to specific user accounts. It is also possible to include several types of

attachments and to target multiple recipients.

AppEngine provides also another way to communicate with the external world: the

Extensible Messaging and Presence Protocol (XMPP). Any chat service that supports

XMPP, such as Google Talk, can send and receive chat messages to and from the Web

application, which is identified by its own address.

Account management- AppEngine simplifies account management by allowing

developers to leverage Google account management by means of Google Accounts.

Using Google Accounts, Web applications can conveniently store profile settings in

the form of key-value pairs, attach them to a given Google account, and quickly retrieve

them once the user authenticates.

5 Compute services

AppEngine offers additional services such as Task Queues and Cron Jobs that simplify

the execution of computations.

Task queues- A task is defined by a Web request to a given URL, and the queue

invokes the request handler by passing the payload as part of the Web request to the

handler. It is the responsibility of the request handler to perform the “task execution,”

which is seen from the queue as a simple Web request.

Cron jobs- the required operation needs to be performed at a specific time of the day,

which does not coincide with the time of the Web request. In this case, it is possible to

schedule the required operation at the desired time by using the Cron Jobs service.

