OOC IAT3 Solution 18CS45 2021-22 Even Sem

1. What is synchronization? when do we use it? How synchronization can be achieved for
threads in Java explain with example programs.

Synchronization:

o When two or more threads need access to a shared resource, they need some way
to ensure that the resource will be used by only one thread at a time. The process
by which this is achieved is called synchronization.

Key to synchronization is the concept of the monitor (also called a semaphore).

A monitor is an object that is used as a mutually exclusive lock or mutex.

Only one thread can own a monitor at a given time.

When a thread acquires a lock, it is said to have entered the monitor.

All other threads attempting to enter the locked monitor will be suspended until the
first thread exits the monitor.

These other threads are said to be waiting for the monitor.

e A thread that owns a monitor can reenter the same monitor if it so desires.

Without Synchronization - Multiple threads trying to access single resource.

./B

t1

Resource
or
Obhject

t2

“ Synchronized Block

Synchronized Block

Time

In Synchronized Block, other threads will have to wait when one thread isin

Two ways of synchronization:
We can synchronize code in two ways. Both involve the use of the synchronized keyword.

1. Using synchronized methods
2. using synchronized statement

1. Using Synchronized Methods:

All objects have their own implicit monitor associated with them. To enter an object’s
monitor, just call a method that has been modified with the synchronized keyword. While a
thread is inside a synchronized method, all other threads that try to call it on the same
instance have to wait. To exit the monitor and relinquish control of the object to the next
waiting thread, the owner of the monitor simply returns from the synchronized method.

To understand the need of synchronization, first let's see an example that does not use
synchronization even though it is required. The example program below has three classes.

The first one, Callme class has a single method named call(). The call() method takes a
String parameter called msg. This method tries to print the msg string inside of square
brackets. But, after call() prints the opening bracket and the msg string, it calls
Thread.sleep(1000), which pauses the current thread for one second.

The second class is Caller. The constructor of this class takes a reference to an instance
of the Callme class and a String, which are stored in target and msg, respectively. The
constructor also creates a new thread that will call this object’s run() method. The thread is
started immediately. The run() method of caller calls the call() method on the target instance
of Callme, passing in the msg string.

Finally, the third class, Synch class starts by creating a single instance of Callme, and three
instances of Caller, each with a unique message string. The same instance of Callme is
passed to each Caller.

We must serialize access to call(). That is, we must restrict its access to only one thread at a
time.
To do this, we have to precede call()’s definition with the keyword synchronized as shown
here

class Callme {

synchronized void call (String msg) {

This prevents other threads from entering call() while another thread is using it.

// Example program to illustrate synchronization using synchronized method
class Callme {

synchronized void call(String msg) {

System.out.print("[" + msg);

try {

Thread.sleep(1000);

}

catch (InterruptedException e) {

System.out.println("Interrupted");

}

System.out.println("]");

}
}
class Caller implements Runnable {
String msg;
Callme target;
Thread t;

public Caller(Callme targ, String s) {
target = targ;

msg =s;

t = new Thread (this);

t.start();

}

public void run() {
target.call(msg);

}
b

class Synch {
public static void main(String args[]) {
Callme target = new Callme();
Caller obl = new Caller (target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller (target, "World");

// wait for the threads to end

try {

obl.t.join();

ob2.t.join();

ob3.t.join();

}

catch (InterruptedException e) {
System.out.println("Interrupted");
}

}

After synchronized has been added to call(), the output of the program is as follows

Output:

$ javac Synch.java
$ java Synch
[Hello]

[World]
[Synchronized]

If synchronized is not added to call(), then we are not serializing access to call(). That is, we
are not restricting its access to only one thread at a time. So the output obtained is as shown
below

Output:

$ javac Synch.java

$ java Synch
[World[Hello[Synchronized]
|

]

In the above output, by calling sleep(), the call() method allows execution to switch to
another thread. This results in the mixed up output of the three message strings.

Nothing exists to stop all three threads from calling the same method, on the same
object, at the same time. This is known as race condition, because the three threads are
racing each other to complete the method.

The synchronized Statement
Creating synchronized methods within classes that you create is an easy and effective means
of achieving synchronization, but it will not work in all cases.
1. If you want to synchronize access to objects of a class that was not designed for
multi-threaded access, the class does not use synchronized methods.
2. If the class was not created by you, but by a third party and you do not have access to
the source code, you can’t add the synchronized modifier to the appropriate methods
within the class.

The solution to this problem is you put calls to the methods defined by this class inside a
synchronized block.

The general form of the synchronized statement

synchronized (object) {
// Statements to be synchronized

}

The object is a reference to the object being synchronized. A synchronized block ensures
that a call to a method that is a member of object occurs only after the current thread
has successfully entered the object's monitor.

Example program which uses synchronized block within run() method

// This program uses synchronized block
class Callme {
void call(String msg) { // method is not synchronizzed
System.out.print("[" + msg);
try {
Thread.sleep(1000);
h

catch (InterruptedException €) {

System.out.println("Interrupted");

}
System.out.println("]");
}

}

class Caller implements Runnable {
String msg;
Callme target;
Thread t;
public Caller(Callme targ, String s) {
target = targ;
msg = s;
t = new Thread (this);
t.start();

}

// Synchronize calls to call()
public void run() {
synchronized (target) { // synchronized block - A synchronized block
// ensures that a call to a method that is a member
// of object occurs only after the current thread has
// successfully entered the object's monitor.

target.call(msg);

h
}
b

class Synchl {
public static void main(String args[]) {
Callme target = new Callme();
Caller obl = new Caller (target, "Hello");
Caller ob2 = new Caller(target, "Synchronized");
Caller ob3 = new Caller (target, "World");

// wait for the threads to end

try {

obl.t.join();

ob2.t.join();

ob3.t.join();

¥

catch (InterruptedException e) {
System.out.println("Interrupted");

b
b

Output:

$ javac Synchl.java
$ java Synchl
[Hello]

[World]
[Synchronized]

Write a Java program to create two threads one thread displays “CMRIT” and the
other thread displays “BENGALURU” on the screen continuously.

class MyThread extends Thread
{
String str;
public MyThread(String s)
{
str=s;
}
public void run()
{
while(true)
{ System.out.print(str + " ");
try
{
Thread.sleep(1000);

}

catch(InterruptedException ie)

{
System.out.println(ie.toString());
}
}
}
}
public class ThreadSetAl

{

public static void main(String args[])

{
MyThread t1=new MyThread("CMRIT");
MyThread t2= new MyThread("BENGALURU");
t1.start();
t2.start();

Output:

java ThreadSetA 1

CMRIT BENGALURU CMRIT BENGALURU CMRIT BENGALURU CMRIT
BENGALURU CMRIT BENGALURU CMRIT BENGALURU CMRIT
BENGALURU CMRIT BENGALURU CMRIT BENGALURU CMRIT
BENGALURU CMRIT BENGALURU *C

Explain the event delegation model in Java. Write a Java program to handle mouse events

THE DELEGATION EVENT MODEL:

Event Delegation Model

event
"

component part action part

In Delegation Event Model, a source generates an event and sends it to one or more
listeners. The listener simply waits until it receives an event. Once the event is
received, the listener processes the event and then returns.

To handle mouse events, we must implement the MouseListener and MouseMotionListener
interfaces. The applet displays the current coordinates of the mouse in the applet’s status
window. Each time a button is pressed, the word “Down” is displayed at the location of the
mouse pointer. Each time the button is released, the word “Up” is shown. If a button is
clicked, the message, “Mouse clicked” is displayed in the upper-left corner of the applet
display area.

As the mouse enters or exits the applet window, a message is displayed in the upper-left
corner of the applet display area. When dragging the mouse, a “*’ is shown, which tracks
with the mouse pointer as it is dragged. The two variables mouseX and mouseY, store the
location of the mouse when a mouse pressed, released or dragged event occurs. These
coordinates are then used by paint() to display output at the point of these occurrences.

// demonstrate the mouse event handlers

import java.awt.*; // Contains all AWT based event classes used by Delegation
Event Model

import java.awt.event.*; // Contains all Event Listener Interfaces

import java.applet.*; /I For Applets

/*

<applet code = ""MouseEvents" width=500 height=300>
</applet>

*/

public class MouseEvents extends Applet
implements MouseListener, MouseMotionListener {

the event

mouse events

/l MouseListener defines 5 methods

/l MouseMotionListener defines 2 methods
String msg =""";
int mouseX = 0, mouseY = 0; // Coordinates of mouse

/I Listener must register with the source. General form -
// public void addTypeListener (TypeListener el) Type is the name of

public void init() {
addMouseListener(this); //applet registers itself as listener for

addMouseMotionListener(this);
}

// Handle mouse clicked
public void mouseClicked(MouseEvent me) {
/I Save coordinates
mouseX = 0;
mouseY = 10;
msg = "Mouse clicked";
repaint();
}

// Handle mouse entered
public void mouseEntered (MouseEvent me) {
// Save coordinates
mouseX = 0;
mouseY = 10;
msg = ""Mouse Entered.";
repaint();

}

// Handle mouse exited.
public void mouseExited(MouseEvent me) {
/I Save coordinates
mouseX = 0;
mouseY = 10;
msg = ""Mouse exited.";
repaint();
}

// Handle button pressed
public void mousePressed(MouseEvent me) {
/I Save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = "Down'';

repaint();

}

// Handle button released

public void mouseReleased(MouseEvent me) {
// Save coordinates
mouseX = me.getX();
mouseY = me.getY();

msg = "Up";
repaint();

}

// Handle mouse dragged

public void mouseDragged(MouseEvent me) {
/l Save coordinates
mouseX = me.getX();
mouseY = me.getY();
msg = vv*n;
showStatus(''Dragging mouse at " + mouseX + ", " + mouseY);
repaint();
}

// Handle mouse moved
public void mouseMoved(MouseEvent me) {
/Il Show status
showStatus("Moving mouse at " + me.getX() + ", " +

me.getY());
}
/I Display message in applet window at current X,Y location
public void paint(Graphics g) {
g.drawString(msg, mouseX, mouseY);
}
i

$ javac MouseEvents.java
$ appletviewer MouseEvents.java

Output:

Applet Viewer: MouseEvents = m 3 =D(100%) 4)) 12:45AM LF cmrit
@ cmrit@cmrit-HP-Mini-110-3500:~% appletviewer MouseEvents.java

E)
=]
=
<

) Applet Viewer: MouseEvents

Moving mouse at 313, 48

Program Explanation:

The MouseEvent class extends Applet and implements both the MouseListener and
MouseMotionListener interfaces. You may also want to implement
MouseWheelListener, but it is not shown in this example program.

These two interfaces contain methods that receive and process the various types of
mouse events.

The applet is both the source and listener for these events, because Component which
supplies the addMouseListener() and addMouseMotionListener() methods, is a
superclass of Applet. (Being both the source and the listener for events is a common
situation for applets)

Inside init(), the applet registers itself as a listener for mouse events. This is done by
using addMouseListener() and addMouseMotionListener(), which are members of
Component.

The applet then implements all of the methods defined by the MouseListener and
MouseMotionListener interfaces. These are the event handlers for the various mouse
events. Each method handles its event and then returns.

Explain adapter and inner class with example programs.

ADAPTER CLASSES

Java provides a special feature called an adapter class, which simplifies the creation of
event handlers in certain situations.

An adapter class provides an empty implementation of all methods in an event
listener interface.

Adapter classes are useful when you want to receive and process only some of the
events that are handled by a particular event listener interface.

We have to define a new class to act as an event listener by extending one of the
adapter classes and implementing only those events in which we are interested.

For example, the MouseMotionAdapter class has two methods, mouseDragged()
and mouseMoved(), which are the methods defined by the MouseMotionListener
interface. If you are interested only in mouse dragged events, then you could simply

extend MouseMotionAdapter and override mouseDragged(). The empty
implementation of mouseMoved() would handle the mouse motion events for you.

Table list the commonly used adapter classes in java.awt.event

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KevListener

MouseAdapter MouseListener and (as of JDK 6)
MouseMotionListener and MouseWheelListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener, WindowFocusListener, and

WindowStateListener

Example program to demonstrate an adapter:

It displays a message in the status bar of an applet or browser when the mouse is
clicked or dragged. No action is taken when the mouse is moved.
All other mouse events are silently ignored.
The program has three classes
1. AdapterDemo extends Applet.
e Its init() method creates an instance of MyMouseAdapter and registers that
object to receive notifications of mouse events.
e [t also creates an instance of MyMouseMotionAdapter and registers that object
to receive notifications of mouse events
e Both of the constructors take reference to the applet as an argument.
2. MyMouseAdapter extends MouseAdapter and overrides the mouseClicked()
method.
e The other mouse events are silently ignored by code inherited from the
MouseAdapter class.
3. MyMouseMotionAdapter extends MouseMotionAdapter and overrides the
mouseDragged() method.
o The other mouse motion event is silently ignored by code inherited from the
MouseMotionAdapter class.

/l Example program to demonstrate an Adapter class

import java.awt.*; /I Contains all AWT based event classes used by
Delegation Event Model

import java.awt.event.*; // Contains all Event Listener Interfaces

import java.applet.*; /I For Applets

/*

<applet code = "AdapterDemo' width=500 height=300>

</applet>

*/

public class AdapterDemo extends Applet {
public void init() {
addMouseListener(new MyMouseAdapter (this));
addMouseMotionListener(new MyMouseMotionAdapter(this));

}

class MyMouseAdapter extends MouseAdapter {
AdapterDemo adapterDemo;
public MyMouseAdapter (AdapterDemo adapterDemo) {
this.adapterDemo = adapterDemo;

}

// Handle mouse clicked
public void mouseClicked(MouseEvent me) {
adapterDemo.showStatus('"Mouse Clicked');

}
}

class MyMouseMotionAdapter extends MouseMotionAdapter {
AdapterDemo adapterDemo;
public MyMouseMotionAdapter (AdapterDemo adapterDemo) {
this.adapterDemo = adapterDemo;

}

// Handle mouse dragged
public void mouseDragged(MouseEvent me) {
adapterDemo.showStatus('"Mouse Dragged");

}

INNER CLASSES:

e inner class is a class defined within another class or even within an expression.
Inner classes can be used to simplify the code when using event adapter classes.
o To understand the benefit of inner classes, consider the applet that does not use an
inner class.
o The goal of the applet is to display the string “Mouse Pressed” in the status bar of the
applet viewer or browser when the mouse is pressed.
e There are two top level classes in this programming
1. MousePressedDemo extends Applet
e Its init() method creates an instance of MyMouseAdapter and registers that
object to receive notifications of mouse events.

2. MyMouseAdapter extends MouseAdapter
e Reference to the applet is supplied as an argument to the MyMouseAdapter
constructor.

e This reference is stored in an instance variable for later use by
mousePressed() method.

e When the mouse is pressed, it invokes the showStatus() method of the applet
through the stored applet reference.

/I 'This applet does not use an inner class

import java.awt.event.*;

import java.applet.*;

/*

<applet code = "MousePressedDemo' width=500 height=300>
</applet>

*/

public class MousePressedDemo extends Applet {
public void init() {
addMouseListener(new MyMouseAdapter(this));
}
}

class MyMouseAdapter extends MouseAdapter {
MousePressedDemo mousePressedDemo;
public MyMouseAdapter (MousePressedDemo mousePressedDemo) {
this.mousePressedDemo = mousePressedDemo;

}

public void mousePressed(MouseEvent me) {
mousePressedDemo.showStatus('"Mouse Pressed");

}

}

The above program can be improved by using an inner class.

InnerClassDemo is a top level class that extends Applet.

MyMouseAdapter is an inner class that extends MouseAdapter. As, MyMouseAdapter
is defined within the scope of InnerClassDemo, it has access to all the variables and methods
within the scope of that class. Therefore, the mousePressed() method can call the
showStatus() method directly. It no longer needs to do this via a stored reference to the
applet. It is no longer necessary to pass MyMouseAdapter() a reference to the invoking
object.

// inner class demo

import java.awt.event.™*; /I Contains all Event Listener Interfaces
import java.applet.*; // For Applets

/*

<applet code = "InnerClassDemo" width=500 height=300>

</applet>

*/

public class InnerClassDemo extends Applet {
public void init() {

addMouseListener(new MyMouseAdapter());

}

class MyMouseAdapter extends MouseAdapter { // class within a class
public void mousePressed(MouseEvent me) {
showStatus(""Mouse Pressed");

}

What is Swing? Differentiate between Swing and AWT Applet. Explain a simple Swing

application with program.

Swing is a set of classes that provide a more powerful and flexible GUI component than
does the AWT. Swing provides the look and feel of the modern Java GUI.

Difference between swings and AWT Applet

SWING

AWT

Swing is a set of classes that
provides more powerful and
flexible GUI components.

AWT defines a basic set of controls, windows, and dialog
boxes that support a usable, but limited graphical interface.
It translates its various visual components into their
corresponding, platform-specific equivalents.

Swing supports a pluggable
look and feel of the modern
Java GUI. Hence it is platform
independent.

Look and feel of the component is defined by the platform,
not by Java. Hence it is platform dependent.

Swing components are
lightweight.

AWT components use native code resources hence they
are referred to as heavy weight.

Swing has the main method to
execute the program.

AWT need HTML code to run the applet

Swing uses
Model-View-Controller (MVC)

Doesn’t use MVC

A Simple Swing Application

There are two types of Java programs in which Swing is typically used.

The first is a desktop application.
The second is the applet.

The following program shows one way to write a Swing application. It demonstrates several

key features of Swing.

It uses two Swing components: JFrame and JLabel.

JFrame is the top-level container that is commonly used for Swing applications.

JLabel is the Swing component that creates a label, which is a component that displays
information. The label is Swing’s simplest component because it is passive. That is, a label

does not respond to user input. It just displays output.

The program uses a JFrame container to hold an instance of a JLabel. The label displays a
short text message.

/I A simple Swing application.
import javax.swing.*;
class SwingDemo

{
SwingDemo()

{
/I Create a new JFrame container.
JFrame jfrm = new JFrame('' A Simple Swing Application");

// Give the frame an initial size.
jfrm.setSize(300, 200);

// ' Terminate the program when the user closes the application.
jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

/I Create a text-based label.

JLabel jlab = new JLabel(" Swing means powerful GUIs.");
// Add the label to the content pane.

jfrm.add(jlab);

// Display the frame.
jfrm.setVisible(true);

}

public static void main(String args[])

{

/I Create the frame on the event dispatching thread.
SwingUtilities.invokeLater(new Runnable()

{

public void run()

{
}

new SwingDemo();

D3

Swing programs are compiled and run in the same way as other Java applications. Thus, to
compile this program, you can use this command line:

javac SwingDemo.java
To run the program, use this command line:
java SwingDemo

When the program is run, it will produce the window shown in Figure below.

@ S @ Asimple Swing Application

e

| Swing means powerful GUIs.

Create a Swing Applet with two buttons named “CSE” and “ISE”. When either of the
buttons is pressed it should display “CSE” is pressed and “ISE” is pressed respectively

// Handle an event in a Swing program.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
class cseise
{
JLabel jlab;
cseise()
{
/I Create a new JFrame container.
JFrame jfrm = new JFrame("An Event Example");

/I Specify FlowLayout for the layout manager.
jfrm.setLayout(new FlowLayout());

// Give the frame an initial size.
jfrm.setSize(220, 90);

// Terminate the program when the user closes the application.
1frm.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

}

/I Make two buttons.
JButton jbtnCse = new JButton("CSE");
JButton jbtnlse = new JButton("ISE");

/I Add action listener for Alpha.
jbtnCse.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent ae)

1
j

jlab.setText("CSE is pressed.");

1)

/I Add action listener for Beta.
jbtnlse.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent ae)

{
}

jlab.setText("ISE is pressed.");

s

// Add the buttons to the content pane.
jfrm.add(jbtnCse);
jfrm.add(jbtnlse);

// Create a text-based label.
jlab = new JLabel("Press a button.");

// Add the label to the content pane.
jfrm.add(jlab);

// Display the frame.
jfrm.setVisible(true);

public static void main(String args[])

{

// Create the frame on the event dispatching thread.
SwingUftilities.invokeLater(new Runnable()

{

public void run()

{
}

new cseise();

s

CSE ISE

Press a button.

CSE ISE
CSE is pressed.

CSE ISE
ISE is pressed.

