

1					
١					
ı		1			
١					
١					
ı	 				

15EC71

Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 **Microwave and Antennas**

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of Smith Chart is permitted.

Module-1

- Explain the Reflex Klystron operation with mode. (06 Marks) 1
 - Derive the expression for reflection coefficient and transmission coefficient. (06 Marks)
 - List the characteristics of Smith Chart.

(04 Marks)

- a. A line of $Z_0 = 400\Omega$ is connected to a load of $200 \pm j300\Omega$ which is exited by matching 2 generator at 800MHz. Find the location and length of a single stub nearest to the load to produce impedance match. Make use of Smith Chart and show all the values.
 - b. A transmission line has the following parameters:

 $R = 2\Omega/m$ G = 0.5 mho/mf = 1GHz L = 8nH/m

Calculate the: i) Characteristic impedance ii) Propagation constant.

(04 Marks)

With neat block diagram, explain the typical microwave system.

(04 Marks)

Module-2

- Illustrate the following s-parameter properties i) Symmetry of [s] for a reciprocal network 3 (08 Marks) ii) unitary property for lossless junction.
 - b. List the characteristics of Magic Tees along with s-matrix relation.

(08 Marks)

- List the significance of following microwave passive device: i) Attenuators ii) Phase (04 Marks) shifter.
 - b. The S-parameter of a two-port network are given by

 $S_{11} = 0.2 | 0^{\circ}$, $S_{22} = 0.1 | 0^{\circ}$, $S_{12} = 0.6 | 90^{\circ}$, $S_{21} = 0.6 | 90^{\circ}$

Prove that i) The network is reciprocal but not lossless ii) Find the return loss at port 1 (04 Marks) when port 2 is short circuited.

c. Explain E-plane tee and H-plane tee along with s-matrix relation.

(08 Marks)

a. A lossless parallel strip line has a conducting strip width W. The substrate dielectric separating the two conducting strips has a relative dielectric constant ϵ_{rd} of 6 and a thickness d of 4mm.

Calculate:

- The required width W of the conducting strip in order to have a characteristic impedance of 50Ω .
- The strip-line capacitance. ii)
- The strip-line inductance. iii)
- The phase velocity of the wave in the parallel strip line.
- Define the following related to antenna parameter i) Directivity ii) Radiation intensity. (05 Marks)
- Derive the expression for effective-aperture and directivity of linear dipole $\lambda/2$ antenna.

(04 Marks)

OR

6 a. Briefly discuss losses in microstrip line.

(03 Marks)

- b. A radio link has a 15-W transmitter connected to an antenna of 2.5m² effective aperture at 5GHz. The receiving antenna has an effective aperture of 0.5m² and is located at a 15-km line of sight distance from the transmitting antenna. Assuming lossless, matched antennas, find the power delivered to the receiver. (04 Marks)
- c. Calculate the directivity of the source with the pattern $u = U_m \sin\theta \sin^3\phi$ using i) Exact method ii) Approximate method. Choose $0 \le \theta \le \pi$ and $0 \le \phi \le \pi$. (06 Marks)

d. Explain Antenna field zones with schematic.

(03 Marks)

(08 Marks)

Module-4

- a. Obtain the expression for the field pattern of two isotropic point source with equal amplitude and equal phase. Assume distance between two source is λ/2. Also draw the field pattern.
 (08 Marks)
 - b. Show that radiation resistance of short electric dipole is given by $80\pi^2 L_{\lambda}^2$.

OR

- 8 a. Derive an array factor expression in case of linear array of n-isotropic point source of equal amplitude and spacing. (08 Marks)
 - b. Starting from electric and magnetic potential, obtain far field components for short electric depole. (08 Marks)

Module-5

- 9 a. Determine the length L, H-plane aperture and flow angle θ_E and θ_H of a pyramidal horn for which E-plane aperture $a_E = 10\lambda$. The horn is fed by a rectangular waveguide with TE_{10} mode. Let $\delta = 0.2\lambda$ in the E plane and 0.375λ in the H-Plane. Also calculate its beam widths and directivity. (06 Marks)
 - b. Discuss the constructional details of Log-periodic antenna.

(04 Marks)

c. Derive the field expression for small loop antenna.

(06 Marks)

OR

- 10 a. Explain the constructional details of yogi-uda array. (03 Marks)
 - b. Derive the expression for radiation resistance of circular loop of any radius say 'a'.

(06 Marks)

c. Obtain the expression for instantaneous electric field and magnetic field at a large distance r from a loop of any radius 'a'. (07 Marks)

* * * * *