

GBGS SCHEME

a34 201.

17EC71

Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 Microwave & Antennas

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain Reflection Klystron amplifier with neat diagram.

(06 Marks)

- b. A Reflex Klystron is to be operated at 10 GHz with dc beam voltage of 300 V, repeller space of 0.1 cm for $1\frac{3}{4}$ mode. Calculate $P_{Rf max}$ and corresponding repeller voltage for a beam current of 20 mA. (06 Marks)
- c. Define Reflection coefficient, transmission coefficient and SWR. Also derive the equation for reflection coefficient at the load end. (08 Marks)

OR

- 2 a. Explain mode curves of reflex klystron and also mention applications in the design of microwave receiver and transmitter circuits. (06 Marks)
 - b. Derive transmission line equations to find voltage and current in terms of Z and L.

(08 Marks)

c. A transmission line has a characteristic impedance of 100∠53.13°. It is terminated with load impedance. The transmission coefficient is 1.09∠35.54°. Find reflective coefficient and load impedance.

Module-2

- a. Explain Z, Y and ABCD parameters used for analysis of Radio frequency circuits and its disadvantages. Derive S-matrix of two port network. (08 Marks)
 - b. Write neat diagram of E plane Tee junction and matrix. Analyse 3 dB splitter property.

(05 Marks)

c. The S parameters of two port network are given by,

$$[S] = \begin{bmatrix} 0.1 \angle 0^{\circ} & 0.8 \angle -45^{\circ} \\ 0.8 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

- (i) Determine whether the network is reciprocal and not lossless.
- (ii) If Port 2 is terminated with a matched load, calculate return loss at Port 1.
- (iii) When Port 2 is short circuited, find return loss at Port 1. (07 Marks)

OR

- a. Write neat diagram for two port network and indicate incident, reflected wave and power.

 Define insertion loss, transmission loss, return loss in terms of S-parameters. (06 Marks)
 - b. Prove S matrix for MAGIC Tee junction.

(08 Marks)

c. Write short notes on Coaxial connectors and adapters.

(06 Marks)

Module-3

- 5 a. Explain the following terms as related to antenna system:
 - (i) Directivity (ii) Beam efficiency (iii) Effective aperture (iv) Half power beam width.

 (08 Marks)
 - b. Discuss different types of losses in microstrip lines.

(07 Marks)

c. Find the maximum directivity of an antenna whose radiation intensity $U=r^2W_{rad}=A_0\sin\theta$. Write an expression for the directivity as a function of the directional angle θ and ϕ .

(05 Marks)

OR

- 6 a. Write neat diagram and derive Friss transmission formula and indicate all the antenna parameters clearly. (06 Marks)
 - b. Consider isotropic radiator in polar coordinate showing incremental angle dA on the surface of a sphere of radius r and derive inverse square law of radiation equation. Also write E-plane and H-plane patterns in two-dimensional (2D) plots by considering two orthogonal principal plane cuts of the 3D pattern of a half wave dipole. (08 Marks)

c. Explain different types of striplines and highlight the importance of dielectric constant in the design of striplines. (06 Marks)

Module-4

- 7 a. Derive radiation resistance of short electric dipole (R_r). (06 Marks)
 - b. Explain different types of antenna array and explain the principle of pattern multiplication with the help of suitable example. (08 Marks)
 - c. A Hertzian dipole of length dl = 0.5 m is radiating into free space. If dipole current is 4 A and frequency is 10 MHz. Calculate the highest power density at a distance of 2 km from the antenna.

 (06 Marks)

OR

- 8 a. Derive an array factor expression in the case of linear array of n isotropic point sources of equal amplitude and spacing. (08 Marks)
 - b. Derive directivity of short dipole antenna. (08 Marks)
 - c. Determine total field pattern using principle of pattern multiplication. For 2 sources separated $\frac{\lambda}{2}$ apart and $\delta = 0$ with individual source pattern given by $E = E_o \cos \phi$.

(04 Marks)

Module-5

- 9 a. Derive an expression for far fields E_{ϕ} and H_{θ} for small loop antenna. (10 Marks)
 - b. Write short note on:
 - (i) Parabolic antenna.
 - (ii) Yagi-Uda antenna.

(10 Marks)

OR

10 a. Show that the radiation resistance of small loop single turn antenna is $31,200\left(\frac{A}{\lambda^2}\right)^2$.

Calculate the radiation resistance for 50 turns if $\frac{C}{\lambda} = 0.1$. Where C is the circumference of circular loop antenna. (10 Marks)

b. Write note on log periodic antenna.

(05 Marks)

c. Write neat diagram of pyramidal horn antenna and determine the length L, H-plane aperture and flare angle θ_E and θ_H in E and H plane respectively. E plane aperture $A_e = 10 \ \lambda$. The horn is fed by a rectangular waveguide with TE_{10} mode. Let $\delta = 0.2\lambda$ in the E plane and $0.375\,\lambda$ in the H plane. Calculate H plane aperture. Also calculate beamwidth and directivity. (05 Marks)

CMRIT LIBRARY
RANGALORE - 560 037