

CBCS SCHEME

								THE
1 1								
1 1								
				1				

15ME73

Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 Control Engineering

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Compare open loop and closed loop control system with example. (08 Marks)
 - b. Explain basic structure of a feedback control system with a suitable example and block diagram. (08 Marks)

OR

- 2 a. Explain the ideal requirements of control system with example. (06 Marks)
 - b. What is controller? Compare PI, PD and PID controllers, with block diagram and relevant characteristics equation. (10 Marks)

Module-2

3 a. Determine system equation of the system shown in Fig.Q.3(a) and draw force-voltage analogy. (08 Marks)

Fig.Q.3(a)

b. A thermometer is dipped in a vessel containing liquid at a constant temperature of θ_1 . thermometer has a thermal capacitance for storing heat as C and thermal resistance to limit heat flow as R. If the temperature indicated by thermometer is θ_r , obtain the transfer function of the system. (08 Marks)

OR

4 a. Determine the transfer function of the system by block diagram reduction technique.

(08 Marks)

Fig.Q.4(a)

1 of 2

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

b. Determine the transfer function of the system by Mason's gain formula.

(08 Marks)

Module-3

- Examine the stability of the system represented by the characteristic equation $2s^4 + 10s^3 + 2s^2 + 5s + k = 0$. Using RH criterion. Suggest the range of K for the system to (08 Marks) be stable.
 - Derive the governing expression for the first order system subjected to unit step response. (06 Marks)
 - Explain the transient response characteristics of a control system to a unit step input. (02 Marks)

A negative feedback control system is characterized by $G(s)H(s) = \frac{K}{s(s+1)(s+2)(s+3)}$ Generate the root locus plot forth values of K ranging from 0 to ∞. (16 Marks)

Module-4

Sketch the Bode plot for a unit feedback system with G(S) (16 Marks) comment on stability.

 $\frac{1}{S(S+1)(S+2)}$ and find the range of Draw the Nyquist plot for a system with G(S)H(S)= (16 Marks) values of K for stability

- Explain series and feedback compensation of a system with a diagram. (08 Marks) (08 Marks)
 - Explain lag compensator and lead compensator with a diagram.

OR

- Explain in brief controllability and observability. (10 Marks) 10
 - Using Kalman's test determine whether the system represented by following state matrix is controllable or not.

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u} \quad \text{and} \quad \mathbf{C} = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{x} \,. \tag{06 Marks}$$

2 of 2

BANGALORE - 560 037