

CBCS SCHEME

				1.5	- 500

18ME732

Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 Automation and Robotics

Time: 3 hrs.

Max. Marks: 100

	λ	Note: Answer any FIVE full questions, choosing ONE full question from each mo	dule.
	11	the. Answer any 11711 fun questions, energy	
2		Module-1	
1	a.	What is automation? Explain basic elements of an automated system.	(10 Marks)
	b.	Briefly explain advanced automation functions.	(10 Marks)
		OR	(OC Marks)
2	a.	Explain with a neat sketch, feed forward control.	(06 Marks)
	b.	What is ADC? Explain three phases in ADC.	(06 Marks) (08 Marks)
	c.	Discuss the input/output devices for discrete data.	(00 Marks)
		Module-2	
•		What is an automated production line? Explain general configuration of an	automated
3	a.	production line and its system configuration.	(10 Marks)
	h	Explain storage buffer in automated production line.	(04 Marks)
	b. c.	A 20 station transfer line has an ideal cycle time $T_c = 1.2 \text{ mins}$. The probabilit	y of station
	C.	breakdown/cycle is equal for all stations and $P = 0.05$. Down time $T_d = 0.8$ mins.	For each of
		the upper bound and lower bound, determine	
		(i) Frequency of line stops / cycle.	
		(ii) Average actual production rate.	
		(iii) Line efficiency.	(06 Marks)
		OR	
4	a.	Discuss the problem areas in analysis and design of automated production lines.	(08 Marks)
	b.	Write short notes on the following:	
		(i) Bar code technology.	(12 Marks)
		(ii) RFID technology:	(12 Marks)
		Module-3	
_		Define a robot. Explain with neat sketches any two robot configurations.	(10 Marks)
5	a.	With suitable examples, explain industrial applications of robots.	(10 Marks)
	D.	With suitable examples, explain industrial approximation	
		OR	
6	a	Write a note on generations of robots.	(08 Marks)
v	b.	Write short notes on,	
		(i) End effectors.	
		(ii) Robot sensors.	(10.75 1)
		(iii) Robot accuracy and repeatability	(12 Marks)
1300		Module-4 Note that the sketches by drawlic and pneumatic actuators	(10 Marks)
7	a.	What are actuators? Explain with sketches, hydraulic and pneumatic actuators.	(10 11441 115)
	b.	With neat sketch, explain the working of,	
		(i) Velocity sensor.(ii) Touch and tactile sensor.	(10 Marks)
		(ii) Touch and tactile sensor.	

1 of 2

OR

8 a. Write an explanatory note on actuator space and joint space. (08 Marks)
b. Derive the direct kinematic equation for PUMA 560 robot. (12 Marks)

Module-5

9 a. Explain the levels of robot programming. (10 Marks)

b. List and explain the requirements of robot programming language.

(10 Marks)

OR

Write short notes on:

a. Offline programming system.

b. Problems in robot programming languages.

c. Issues in OLP systems.

d. Sub tasks in OLP systems.

(20 Marks)

CMRIT LIBRARY BANGALORE - 560 037