

USN

Internal Assessment Test 1 Souktion and scheme – May. 2022

Sub: Data Structure using C++ Sub Code: 18EC643 Branch: ECE

Date: -05-2022 Duration: 90 Minutes Max Marks: 50 Sem / Sec: 6 (A, B,C,D) OBE

Answer any FIVE FULL Questions

MARKS

CO

RBT

1 (a) What function ? Explain different types of function with sysntax.

For better understanding of arguments and return in functions,

user-defined functions can be categorised as:

 Function with no argument and no return value

 Function with no argument but return value

 Function with argument but no return value

 Function with argument and return value

The parameters passed to function are called actual parameters.

The parameters receive here are two most popular ways to pass

parameters.

Pass by Value: In this parameter passing method, values of actual

parameters are copied to function’s formal parameters and the two

types of parameters are stored in different memory locations. So any

changes made inside functions are not reflected in actual parameters

of caller.

 parameters of function are called formal parameters.

Passing an argument by address involves passing the address of

the argument variable rather than the argument variable itself.

Because the argument is an address, the function parameter must

be a pointer.

Pointer

Int *a;

Int b

a=&b

(b) Write a program to check entered number is postive or negative

using call by reference function.
#include <iostream>
using namespace std;

int main()
{
 signed long num1 = 0;
 cout << "\n\n Check whether a number is positive,
negative or zero :\n";
 cout << "---
----------------\n";
 cout << " Input a number : ";
 cin >> num1;
even(num);

(5+5)M CO1 L1

L3

void num(int &num1)
 if(num1 > 0)
 {
 cout << " The entered number is positive.\n\n";
 }
 else if(num1 < 0)
 {
 cout << " The entered number is negative.\n\n";
 }
 else
 {
 std::cout << " The number is zero.\n\n";
 }
 return 0;

}

2 (a)What is template? Explain its type with syntax.

• A template is a simple and yet very powerful tool in C++.

The simple idea is to pass data type as a parameter so that

we don’t need to write the same code for different data

types.

• C++ adds two new keywords to support

templates: ‘template’ and ‘typename’. The second keyword

can always be replaced by keyword ‘class’.

• The c++ template can be defined as a blueprint or formula

for creating a generic class or a function. Templates are the

foundation of generic programming.

template<class T> T add(T &a,T &b)

{

T result = a+b;

return result;

}

• Function Templates with Multiple Parameters We can

use more than one generic type in the template function

by using the comma to separate the list.

• Syntax:

template<class T1, class T2,…..>

return_type function_name (arguments of type T1, T2….)

{

//body of function.

}

#include<iostream>

using namespace std;

template<class X,class Y> void fun(X a,Y b)

{

cout << "Value of a is : " <<a<< endl;

cout << "Value of b is : " <<b<< endl;

}

 int main()

(5+5)M

CO1 L1

L3

{

 fun(15,12.3);

 return 0;

}

b) Write a program in C++ to swap two variable content using on

templates function.

3 (a)What is pointer? Explain with an example.

 int *ptr = new int;

 By writing new int, we allocated the space in memory

required by an integer. Then we assigned the address of that

memory to an integer pointer ptr.

 We assign value to that memory as follows:

 *ptr = 4;

[4+6]M CO1 L3

L3

b)what is Dynamic Memory Allocation(DMA)? Explain 1-

Dimension and 2-Dimension array declaration with neat figures and

syntax.

 The main use of the concept of dynamic memory allocation

is for allocating arrays when we have to declare an array by

specifying its size but are not sure about the size.

 char name[30];

 And if the user enters the name having only 12 characters,

then the rest of the memory space which was allocated to the

array at the time of its declaration would become waste, thus

unnecessary consuming the memory.

 In this case, we will be using the new operator to dynamically

allocate the memory at runtime. We use the new operator as

follows.

 char *arr = new char[length]





4 (a)Write a C++ program which prints principal diagonal elements

of square matrix of order mXn in reverse order using DMA

concept.
class GFG {
 static int MAX = 100;

 // Function to print the Principal Diagonal
 static void printPrincipalDiagonal(int mat[][], int n)
 {
 System.out.print("Principal Diagonal: ");

 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {

 // Condition for principal diagonal

[6+4]M CO1 L3

L3

 if (i == j) {
 System.out.print(mat[i][j] + ", ");
 }
 }
 }
 System.out.println("");
 }

 // Function to print the Secondary Diagonal
 static void printSecondaryDiagonal(int mat[][], int n)
 {
 System.out.print("Secondary Diagonal: ");

 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {

 // Condition for secondary diagonal
 if ((i + j) == (n - 1)) {
 System.out.print(mat[i][j] + ", ");
 }
 }
 }
 System.out.println("");
 }

 // Driver code
 public static void main(String args[])
 {
 int n = 4;
 int a[][] = { { 1, 2, 3, 4 },
 { 5, 6, 7, 8 },
 { 1, 2, 3, 4 },
 { 5, 6, 7, 8 } };

 printPrincipalDiagonal(a, n);
 printSecondaryDiagonal(a, n);
 }
}

(b)Create student class, display his info using class template.
5

(a)Explain function overloading with an appropriate example.
Function overloading is a feature of object oriented programming

where two or more functions can have the same name but different

parameters.

When a function name is overloaded with different jobs it is called

Function Overloading.

In Function Overloading “Function” name should be the same and the

arguments should be different.

Function overloading can be considered as an example of

polymorphism feature in C++.

Following is a simple C++ example to demonstrate function

overloading.

void print(int i) {
 cout << " Here is int " << i << endl;

[5+5]M CO1 L3

L2

}
void print(double f) {
 cout << " Here is float " << f << endl;
}
void print(char const *c) {
 cout << " Here is char* " << c << endl;
}

int main() {
 print(10);
 print(10.10);
 print("ten");
 return 0;
}

(b)Write a C++ program to substract two matrices and print

result in matrix form.
#include<iostream>

using namespace std;

int main()

{

 int matOne[3][3], matTwo[3][3], matSub[3][3], i, j;

 cout<<"Enter 9 Elements for First Matrix: ";

 for(i=0; i<3; i++)

 {

 for(j=0; j<3; j++)

 cin>>matOne[i][j];

 }

 cout<<"Enter 9 Elements for Second Matrix: ";

 for(i=0; i<3; i++)

 {

 for(j=0; j<3; j++)

 cin>>matTwo[i][j];

 }

 for(i=0; i<3; i++)

 {

 for(j=0; j<3; j++)

 matSub[i][j] = matOne[i][j] - matTwo[i][j];

 }

 cout<<"\nThe New Matrix (Subtraction Result) is:\n";

 for(i=0; i<3; i++)

 {

 for(j=0; j<3; j++)

 cout<<matSub[i][j]<<" ";

 cout<<endl;

 }

 cout<<endl;

 return 0;

}

6 a) What is recursive function? Using function template write a

C++ program to find a factorial of given number using recursive

concept.

[6+4]M CO1 L3

L1

In this tutorial, we will learn about recursive function in C++ and

its working with the help of examples.

A function that calls itself is known as a recursive function. And,

this technique is known as recursion
#include <iostream>

using namespace std;

int factorial(int);

int main() {

 int n, result;

 cout << "Enter a non-negative number: ";

 cin >> n;

 result = factorial(n);

 cout << "Factorial of " << n << " = " << result;

 return 0;

}

int factorial(int n) {

 if (n > 1) {

 return n * factorial(n - 1);

 } else {

 return 1;

 }

}

b)Explain C++ constructors and Destructors..
Constructor is a member function of class, whose name is same as the

class.

A constructor is a special type of member function of a class which

initializes objects of a class. In C++, Constructor is automatically called

when object(instance of class) is created.

Constructor is invoked at the time of object creation. It constructs the

values i.e. provides data for the object that is why it is known as

constructors.

Constructor does not have a return value, hence they do not have a

return type.

Prototype of Constructors:-

 <class-name> (list-of-parameters);

Constructors can be defined inside or outside the class declaration:-

https://www.programiz.com/cpp-programming/function

 1. Syntax for defining the constructor within the class:

 <class-name> (list-of-parameters)

 {

 // constructor definition

 }

 2. Syntax for defining the constructor outside the class:

 <class-name>: :<class-name> (list-of-parameters)

 {

 // constructor definition

 }

 C++

// defining the constructor within the class

#include <iostream>

using namespace std;

class student {

 int rno;

 char name[10];

 double fee;

public:

 student()

 {

 cout<<"Enter the RollNo:";

 cin>>rno;

 cout<<"Enter the Name:";

 cin>>name;

 cout<<"Enter the Fee:";

 cin>>fee;

 }

 void display()

7 (a)What is inheritance? Explain it types with neat diagrams and

syntax.
The capability of a class to derive properties and characteristics from

another class is called Inheritance. Inheritance is one of the most

important features of Object-Oriented Programming.

 Sub Class: The class that inherits properties from another class is

called Subclass or Derived Class.

 Super Class: The class whose properties are inherited by a subclass

is called Base Class or Superclass.

The article is divided into the following subtopics:

 Why and when to use inheritance?

 Modes of Inheritance

 Types of Inheritance

sing inheritance, we have to write the functions only one time instead of

three times as we have inherited the rest of the three classes from the base

class (Vehicle).

Implementing inheritance in C++: For creating a sub-class that is

inherited from the base class we have to follow the below syntax.

Syntax:
class subclass_name : access_mode base_class_name

{

 // body of subclass

[7+3] CO1 L3

L1

https://www.geeksforgeeks.org/c-classes-and-objects/

};

Here, subclass_name is the name of the subclass, access_mode is the

mode in which you want to inherit the subclass for example public,

private, etc. and base_class_name is the name of the base class from

which you want to inherit the subclass.

(b) Explain virtual and pure virtual functions.

.
Virtual Function in C++

A virtual function is a member function which is declared within a base

class and is re-defined(Overriden) by a derived class. When you refer to

a derived class object using a pointer or a reference to the base class,

you can call a virtual function for that object and execute the derived

class’s version of the function.

Pure Virtual Functions in C++

A pure virtual function (or abstract function) in C++ is a virtual

function for which we don’t have an implementation, we only declare

it. A pure virtual function is declared by assigning 0 in the declaration.

Similarities between virtual function and pure virtual function
1. These are the concepts of Run-time polymorphism.

2. Prototype i.e. Declaration of both the functions remains the same

throughout the program.

3. These functions can’t be global or static.

 HOD CI CCI

https://www.geeksforgeeks.org/access-modifiers-in-c/
https://www.geeksforgeeks.org/virtual-function-cpp/
https://www.geeksforgeeks.org/pure-virtual-functions-and-abstract-classes/

