

Scheme Of Evaluation Internal Assessment Test I – May 2022

Sub:	DIGITAL COMMUNICATION					Code:	18EC61		
Date:	06 / 05 / 2022	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE

Note: Answer All Questions

Question		Description	Marks		Max
#	#		Distri	bution	Marks
1	a	Define Hilbert transform. Plot the magnitude response and phase response of the		5	10
		ideal Hilbert transformer. What is the impulse response of the ideal Hilbert			
		transformer?			
		Definition of Hilbert transform	2		
		Magnitude Response	1		
		Phase Response	1		
		Impulse Response	1		
	b	Determine the Hilbert transform of $x(t)=sinc(t)$		5	
		Fourier Transform of x(t)	2		
		Hilbert transfrom of x(t)	3		
2	a	State and prove the properties of Hilbert transform.		6	10
		3 properties – statement and proof	6		
	b	Determine the Hilbert transform of the signal $x(t)$ given by		4	
		$x(t) = \begin{cases} 1 & for -\frac{T}{2} \le t \le \frac{T}{2} \end{cases}$			
		$0 \qquad otherwise$			
		• Convolution of x(t) and h(t)	4		
3		Discuss pre-envelope and complex envelope of bandpass signals with relevant		10	10
		equations. Plot the spectra of a bandpass signal, its pre-envelope and complex			
		envelope.			
		pre-envelope and complex envelope – definition in time domain	4	1	
		pre-envelope and complex envelope – frequency domain representation	4		
		Plotting the spectra	2		
4		Derive an expression for the canonical representation of bandpass signals. Obtain a		10	10
		scheme for extracting in-phase and quadrature components of bandpass signals.			
		Draw the corresponding block diagram.			

		Expression in terms of in-phase and quadrature components	5		
		• Block diagram to get $x_i(t)$ and $x_q(t)$	3		
		• Block diagram to construct $x(t)$	2		
5	a	Find the pre-envelope and complex envelope of $x(t) = A_c[1 + K_a m(t)] \cos(2\pi f_c t)$ where $m(t)$ is a lowpass signal bandlimted to W Hz and $f_c \gg W$.		4	10
		Finding the pre-envelope	2		
		Finding complex envelope	2		
	b	Sketch the waveforms for the binary sequence "110000000011" using the following		6	
		line coding schemes.			
		i) HDB3 ii) B3ZS iii) B6ZS			
		Plotting the waveforms	6		
6		Derive an expression for the power spectral density of NRZ unipolar signals.		10	10
		Fourier transform of basic pulse	3		
		Autocorrelation function	3		
		Simplification	4		

Solutions Internal Assessment Test I – May 2021

Sub:	DIGITAL COMMUNICATION					Code:	18EC61		
Date:	19/05/2021	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE,TCE

Note: Answer All Questions

Oue	stion	Description	Ma
_	#	•	rks
1	a	Define Hilbert transform. Plot the magnitude response and phase response of the ideal Hilbert	5
		transformer. What is the impulse response of the ideal Hilbert transformer?	
		• +ve frequency components are phase shifted by -90 degree and -ve frequency components are	
		phase shifted by 90 degree	
		• $ H(f) = \begin{cases} 1 & \text{for } f \neq 0 \\ 0 & \text{for } f = 0 \end{cases}$	
		$-90 degree for f > 0$ • $< H(f) = \{ 0 \text{ at } f = 0 \}$ 90 $degree for f < 0$	
		$h(t) = \frac{1}{}$	
		$\frac{n(t)-\frac{t}{\pi t}}{\pi t}$	
	b	Determine the Hilbert transform of $x(t)=sinc(t)$	5
		• $X(f) = rect(f)$	
		$\bullet \hat{X}(f) = X(f)H(f)$	
		• $\hat{\chi}(t) = IFT \ of \ \hat{\chi}(f)$	
		$\frac{1}{2}$	
		$= \int X(f)H(f)df$	
		$-\frac{1}{2}$	
		$=\frac{1-\cos(\pi t)}{\pi t}$	
2	a	State and prove the properties of Hilbert transform.	6
		A signal and its HT have the same magnitude spectrum	
		Proof:	
		$ \hat{X}f) = X(f) H(f) = X(f) $	
		• HT of HT of $x(t)$ is $-x(t)$	
		Proof:	
		Total phase shift after taking HT once is equal to ∓90 degree	
		Total phase shift after taking HT twice is equal to ∓180 degree	

1		Therefore, we get $-x(t)$ as HT of HT of $x(t)$	
		A signal and its HT are orthogonal to each other.	
		Proof:	
		$\int X(f)X(f)df = \int X(f)X^*(f)j sgn(f)df = \int X(f) ^2 sgn(f)df = 0$	
		$-\infty$ $-\infty$ $-\infty$	
	b	Determine the Hilbert transform of the signal $x(t)$ given by	4
		$x(t) = \begin{cases} 1 & for -\frac{T}{2} \le t \le \frac{T}{2} \\ 0 & otherwise \end{cases}$	
		$x(t) = \{ 1 for -\frac{\pi}{2} \le t \le \frac{\pi}{2} \}$	
		0 Other wise	
		$\hat{\chi}(t) = \chi(t) * h(t)$	
		$\frac{T}{2}$ 1	
		$=\int_{-T}^{\frac{T}{2}} \frac{1}{\pi(t-r)} dr$	
		<u>L</u>	
		$= -\frac{1}{\pi} \ln\{t - r\} \frac{T}{ _{\frac{T}{2}}}$ $= -\frac{1}{\pi} \ln\left(\frac{t - \frac{T}{2}}{t + \frac{T}{2}}\right)$	
		$-\frac{\pi}{\pi}\frac{\Pi(t-t)}{-\frac{T}{2}}$	
		$1 t-\frac{T}{2}$	
		$=-\frac{L}{\pi}ln\left(\frac{L}{T}\right)$	
		$t+\frac{1}{2}$	
3		Discuss pre-envelope and complex envelope of bandpass signals with relevant equations. Plot the spectra	10
		of a bandpass signal, its pre-envelope and complex envelope.	
		Let $x(t)$ be a bandpass signal.	
		Let $\lambda(t)$ be a bandpass signal.	
		(x)	
		(XCF)	
		(xCf.)	
		A A	
		-f-W-f-f+W O f-W fc fc+W	
		$x_+(t) = x(t) + j\hat{x}(t)$	
		$x_{-}(t) = x(t) - j\chi(t)$	

Derive an expression for the canonical representation of bandpass signals. Obtain a scheme for extracting in-phase and quadrature components of bandpass signals. Draw the corresponding block diagram.

6		Derive an expression for the power spectral density of NRZ unipolar signals.	10
		$V(f) = T_b sinc(fT_b)$	
		$R_A(n) = \begin{cases} \frac{a^2}{2} & \text{for } n = 0\\ \frac{a^2}{4} & \text{otherwise} \end{cases}$	
		$\frac{2}{2} for n = 0$	
		$R_A(n) = \frac{a^2}{4}$ otherwise	
		4	
		∞	
		$S(f) = \frac{1}{T_b} V(f) ^2 \sum_{n = -\infty}^{\infty} R(n) e^{-j2\pi f nT}_b$	
		$T_b = \sum_{n=-\infty}^{\infty} T_b$	
		$= \frac{a^2}{4}T_b sinc^2(fT_b) + \frac{a^2}{4}\delta(f)$	
		s(f)	
		$\frac{a^2}{a}$ S(f)	
		(= 80)	
		a Tb	
		4	
		f f	
		2 3 4	
		0	
		1 4	
5	a	Sketch the waveforms for the binary sequence "11001100" using the following line coding schemes.	4
		i) NRZ Polar ii) RZ Bipolar iii) Manchester ii) NRZ Unipolar	1
			<u> </u>
	b	Sketch the waveforms for the binary sequence "110000000011" using the following line coding schemes.	6
		i) HDB3 ii) B3ZS iii) B6ZS	

