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1. |What are microwaves? Mention the applications of microwaves. Explain
[10] |co1| L2
briefly the microwave system with the help of a suitable diagram.
2. |With the help of a suitable diagram, derive the expression for the
[10] co1 L2
instantaneous voltage and current on a two wire transmission line.
3. What are standing waves? Derive expression for the voltage maximum and
[10] Cco1 L3
minimum for the standing waves.
4. [Define and derive an expression for reflection coefficient when the
[10] Co1 L2
transmission line is terminated by load impedance (Z,).
5. A transmission line has the following primary constants per km of the line:
R=8Q/m, G=0.1pU/m, L=3.5mH/m, C=9nF/m. Calculate Zo, a, B, vp and y at [10] |co1 L3
w=5000 rad/sec.
6.a | Define standing wave ratio. Derive the relationship between the standing
. . - [06] co1 L3
wave ratio and reflection coefficient.
6.b | A transmission line working at RF has following constants: L=9uH/m,
C=16pF/m, the line is terminated in a resistive load of 1000 Q. Find the [04] |co1| 3
reflection coefficient and standing wave ratio.
7 A load impedance of Zi=60-j80 Q is required to be matched to a 50 Q coaxial
line, by using short circuited stub of length I’ located at a distance 'd’ from
L . . [10] |cCO1 L3
the load. The wavelength of operation is 1m. Design the single stub
impedance matching system using Smith Chart.




Solutions

1. Microwaves are alternating current signals characterized by shortest wavelengths (1cm to 1m) and
highest frequencies (300 MHz to 30 GHz).

Applications of Microwave:
e To cookfood as it cause water and fat molecules to vibrate, which makes the substances hot.
e Mobile phones use microwaves, as they can be generated by a small antenna.
e Wifi also uses microwaves.
e Fixed traffic speed cameras.
e For radar, which is used by aircraft, ships and weather forecasters.

MICROWAVE SYSTEMS

A microwave system normally consists of a transmitter subsystem, including a mi-
crowave oscillator, waveguides, and a transmitting antenna, and a recetver subsys-
tem that includes a receiving antenna, transmission line or waveguide, a microwave
amplifier, and a receiver. Figure 0-1 shows a typical microwave system.

In order to design a microwave system and conduct a proper test of it, an ade-
quate knowledge of the components involved is essential. Besides microwave
devices, the text therefore describes microwave components, such as resonators, cav-
ities, microstrip lines, hybrids, and microwave integrated circuits.
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Figure 0-1 Microwave system.

TRANSMISSION-LINE EQUATIONS AND SOLUTIONS
3-1-1 Transmission-Line Equations

A transmission line can be analyzed either by the solution of Maxwell’s field equa-
tions or by the methods of distributed-circuit theory. The solution of Maxwell's
equations involves three space variables in addition to the time variable. The
distributed-circuit method, however, involves only one space variable in addition to



the time variable. In this section the latter method is used to analyze a transmission
line in terms of the voltage, current, impedance, and power along the line.

Based on uniformly distributed-circuit theory, the schematic circuit of a con-
ventional two-conductor transmission line with constant parameters R, L, G, and C
1s shown in Fig. 3-1-1. The parameters are expressed in their respective names per
unit length, and the wave propagation is assumed in the positive z direction.
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Figure 3-1-1 Elementary section of a transmission line.

By Kirchhoff ’s voltage law, the summation of the voltage drops around the
central loop 1s given by _
ailz, t) dol(z, t)
+ vlz, 1) +
dt vz, 1) dz
Rearranging this equation, dividing it by Az, and then omitting the argument (z, ),
which is understood, we obtain

viz, 1) = ilz, DR Az + LAz

Az (3-1-1)

v : oi

Using Kirchhoff 's current law, the summation of the currents at point B in Fig.
3-1-1 can be expressed as
dv(z + Az, 1)

i(z, 1) = viz + Az, )G Az + C Az p + i(z + Az, 1)
I

avlz, 1)
z

[L‘-{z, t) + ﬁz]G Az (3-1-3)

dv(z, t) dilz, t)

> Az

+ C &z%[u(z, 1+ ﬂz] + iz, t) +
By rearranging the preceding equation, dividing it by Az, omitting (z, ¢}, and as-
suming Az equal to zero, we have

di av

—_—— = s+ — -1-

e Gu Ca: (3-1-4)
Then by differentiating Eq. (3-1-2) with respect to z and Eq. (3-1-4) with respect to
t and combining the results, the final transmission-line equation in voltage form is



found to be
v
dz?
Also, by differentiating Eq. (3-1-2) with respect to t and Eq. (3-1-4) with respect to
z and combining the results, the final transmission-line equation in current form is

0% _ di d%i
P RGi + (RC + LG) vl LC PYE (3-1-6)

P av
= RGv + (RC + LG}F? + Lcﬁ; (3-1-5)

All these transmission-line equations are applicable to the general transient solution.
The voltage and current on the line are the functions of both position z and time ¢.
The instantaneous line voltage and current can be expressed as

v(z, t) = Re V(z)e™ (3-1-7)
i(z, t) = Re I(z)e/ (3-1-8)
where Re stands for “real part of.” The factors V(z) aand I(z) are complex quantities
of the sinusoidal functions of position z on the line and are known as phasors. The

phasors give the magnitudes and phases of the sinusoidal function at each position of
z, and they can be expressed as

V(z) = Vie ™ + V_e¢” (3-1-9)
Iz} = Lie ™™ + L.e¥” (3-1-10)
y=a+ jB (propagation constant) (3-1-11)

where V¥, and I, indicate complex amplitudes in the positive z direction, V- and I_-
signify complex amplitudes in the negative z direction, « is the attenuation constant
in nepers per unit length, and 8 is the phase constant in radians per unit length.

If we substitute jw for d/dt in Egs. (3-1-2), (3-1-4), (3-1-5), and (3-1-6) and
divide each equation by e/, the transmission-line equations in phasor form of the
frequency domain become

dv _

o —ZI (3-1-12)
dl
= YV (3-1-13)
d*V )
1 - a2y -1-
= y (3-1-14)
d*1
E = '}'11 [3-1'15)
in which the following substitutions have been made:
Z =R+ joL (ohms per unit length) (3-1-16)
Y=G+ joC (mhos per unit length) (3-1-17)

y=VZ¥ =a + jB (propagation constant) (3-1-18)



For a lossless line, R = G = 0, and the transmission-line equations are expressed as

dV

& — jolLl (3-1-19)

? = — jwCV (3-1-20)
c:z\*" ~w’LCV (3-1-21)
%:3] = —w?LCl (3-1-22)

It is interesting to note that Egs. (3-1-14) and (3-1-15) for a transmission line are
similar to equations of the electric and magnetic waves, respectively. The only dif-
ference is that the transmission-line equations are one-dimensional.

3-1-2 Solutions of Transmission-Line Equations

The one possible solution for Eq. (3-1-14) is

V=V.e” + V.e* =V, e e + V_ ek (3-1-23)
The factors V, and V_ represents complex quantities. The term involving e /#
shows a wave traveling in the positive z direction, and the term with the factor ¢/ is
a wave going in the negative z direction. The quantity Bz is called the electrical

length of the line and is measured in radians.
Similarly, the one possible solution for Eq. (3-1-15) is

1= Yu(V+€_T2 - v—ET:) = YD{V+E_ME"J.‘B= - V- quejﬁz] (3—1—24)
In Eq. (3-1-24) the characteristic impedance of the line is defined as

___ (R + _,i'{LI'L _ .
Ly = \/r G + _,rmC = Ro * ann (3 1-25}



STANDING WAVE AND STANDING-WAVE RATIO
3-3-1 Standing Wave

The general solutions of the transmission-line equation consist of two waves traveling
in opposite directions with unequal amplitude as shown in Egs. (3-1-23) and
(3-1-24). Equation (3-1-23) can be written

v — vie—uzf—jﬂz + v_gme.jﬁz
= V.e *[cos (Bz) — j sin (Bz)] + V_e**[cos (Bz} + j sin (Bz)] (3-3-1)
= (Vie™ + V_e*) cos (Bz) — j(Vie ™ — V_e*) sin (Bz)



With no loss in generality it can be assumed that V.e ™ and V_e® are real. Then
the voltage-wave equation can be expressed as

V, = Voe 7 (3-3-2)
This is called the equation of the voltage standing wave, where
Vo = [(Vie™ + V_e*) cos® (Bz) + (Vie™™ — V_e ) sin* (Bz)]'* (3-3-3)

which is called the standing-wave pattern of the voltage wave or the amplitude of
the standing wave, and

v-l- e"ﬂ‘z _— v_ E-CI"."
VI E—uz + V_Eu:z

¢ = arctan ( tan [_Bz}) (3-3-4)

which is called the phase pattern of the standing wave. The maximum and minimum
values of Eq. (3-3-3) can be found as usual by differentiating the equation with re-
spect to Bz and equating the result to zero. By doing so and substituting the proper
values of Bz in the equation, we find that

1. The maximum amplitude is

Vo = Vie™ + Voe* = V,.e™(1 + |I')) (3-3-5)

and this occurs at 8z = nmw, where n = 0, £1, 2, . ...
2. The minimum amplitude is

Vaio = Vie ™™ = Voe™ = Voe (1 — |T'|) (3-3-6)
and this occurs at Bz = (2n — 1)w/2, where n = 0, =1, *2, . ..

3. The distance between any two successive maxima or minima is one-half wave-
length, since

Bz = nw z=%=%=n% (m=0, £1, =2, }
Then
A
z = 2 (3-3-7)

It is evident that there are no zeros in the minimum. Similarly,
Inae = Lie ™™ + Le* = Le*(1 + |T)) (3-3-8)
Lo = Lie™ = I_e®™ = Lie (1 — |T) (3-3-9)

The standing-wave patterns of two oppositely traveling waves with unequal amplitude
in lossy or lossless line are shown in Figs. 3-3-1 and 3-3-2.
A further study of Eq. (3-3-3) reveals that

1. When V. # 0 and V. = 0, the standing-wave pattern becomes
VEI =V, e {3'3-10)
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3-3-2 Standing-Wave Ratio

Standing waves result from the simultaneous presence of waves traveling in opposite
directions on a transmission line. The ratio of the maximum of the standing-wave
pattern to the minimum is defined as the standing-wave ratio, designated by p. That
is.

maximum voltage or current
minimum voltage or current

i !‘,’mJ —_ |Imnu|

P | vmln | |[m'm| (3 3 16}
The standing-wave ratio results from the fact that the two traveling-wave components
of Eq. (3-3-1) add in phase at some points and subtract at other points. The distance
between two successive maxima or minima is A/2. The standing-wave ratio of a pure
traveling wave is unity and that of a pure standing wave is infinite. It should be noted
that since the standing-wave ratios of voltage and current are identical, no distinc-
tions are made between VSWR and ISWE..

When the standing-wave ratio is unity, there is no reflected wave and the line is
called a flat line. The standing-wave ratio cannot be defined on a lossy line because
the standing-wave pattern changes markedly from one position to another. On a low-
loss line the ratio remains fairly constant, and it may be defined for some region. For
a lossless line, the ratio stays the same throughout the line.

Since the reflected wave is defined as the product of an incident wave and its
reflection coefficient, the standing-wave ratio p is related to the reflection coefficient
I' by

Standing-wave ratio =

_1+|r]

P =TT (3-3-17)
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4.

REFLECTION COEFFICIENT AND TRANSMISSION
COEFFICIENT

3-2-1 Reflection Coefficient

In the analysis of the solutions of transmission-line equations in Section 3-1, the
traveling wave along the line contains two components: one traveling in the positive
z direction and the other traveling the negative z direction. If the load impedance is
equal to the line characteristic impedance, however, the reflected traveling wave
does not exist.

Figure 3-2-1 shows a transmission line terminated in an impedance Z,. It is
usually more convenient to start solving the transmission-line problem from the re-
ceiving rather than the sending end, since the voltage-to-current relationship at the
load point is fixed by the load impedance. The incident voltage and current waves
traveling along the transmission line are given by

V=Vie¥+ V_ 7 (3-2-1)
I =1ie” +1e'™" (3-2-2)
in which the current wave can be expressed in terms of the voltage by

_V A

=t ¥ — ¥ 22-
| Zue Z e (3-2-3)

If the line has a length of €, the voltage and current at the receiving end become
Ve=V.e "™ + V_e (3-2-4)
I = ime-vf — V_e¥) (3-2:5)

The ratio of the voltage to the current at the receiving end is the load impedance.
That is,

\Y Vie ™ + V_oeg*
Ze=— = Log—— - (3-2-6)
I; Vie ™™ — V_e
Zx I,/ - _
[ I :
W — V. . v .
g Sending ¢ Receiving %
end end
O g >0
o 7 d -0

Figure 3-2-1 Transmission line terminated in a load impedance.



The reflection coefficient, which is designated by I' (gamma}, is defined as

reflected voltage or current
incident voltage or current

Vrct’ _Irel‘
= = 27
Vmc lir.u:' {3 2 ]
If Eq. (3-2-6) is solved for the ratio of the reflected voltage at the receiving end,
which is V_e", to the incident voltage at the receiving end, which is V. e, the re-
sult is the reflection coefficient at the receiving end:

V_oe _ Ly — 1y
V+€‘7£ Zf + Z‘ﬂ‘

Reflection coefficient =

r

[‘f=

(3-2-8)
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