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1. Discuss Process Context and PCB with respect to Process. 
The kernel allocates resources to a process and schedules it for use of the CPU. 

Accordingly, the kernel’s view of a process consists of two parts: 

• Code, data, and stack of the process, and information concerning memory and other resources, such as 

files, allocated to it. 

• Information concerning execution of a program, such as the process state, the CPU state including the 

stack pointer, and some other items of information. 

These two parts of the kernel’s view are contained in the process context and 

the process control block (PCB), respectively This arrangement enables different OS modules to access 

relevant process-related information conveniently and efficiently. 

Process Context The process context consists of the following: 

1. Address space of the process: The code, data, and stack components of the process  

2. Memory allocation information: Information concerning memory areas allocated to a process. This 

information is used by the memory management unit (MMU) during operation of the process  

3. Status of file processing activities: Information about files being used, such as current positions in the 

files. 

4. Process interaction information: Information necessary to control interaction ofthe processwith other 

processes, e.g., ids of parent and child processes, and interprocess messages sent to it that have not yet 

been delivered to it. 

5. Resource information: Information concerning resources allocated to the process. 

6. Miscellaneous information: Miscellaneous information needed for operation of a process. The OS 

creates a process context by allocating memory to the process, loading the process code in the allocated 

memory and setting up its data space. Information concerning resources allocated to the process and its 

interaction with other processes is maintained in the process context throughout the life of the process. 

This information changes as a result of actions like file open and close and creation and destruction of 

data by the process during its operation. 
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 Process Control Block (PCB) The process control block (PCB) of a process contains three kinds of 

information concerning the process—identification information such as the process id, id of its parent 

process, and id of the user who created it; process state information such as its state, and the contents of 

the PSW and the general-purpose registers (GPRs); and information that is useful in controlling its 

operation, such as its priority, and its interaction with other processes. It also contains a pointer field that 

is used by the kernel to form PCB lists for scheduling, e.g., a list of ready processes.  
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The priority and state information is used by the scheduler. It passes the id of the selected process to the 

dispatcher. For a process that is not in the running state, the PSW and GPRs fields together contain the 

CPU state of the process when it last got blocked or was. Operation of the process can be resumed by 

simply loading this information from its PCB into the CPU. This action would be performed when this 

process is to be dispatched. When a process becomes blocked, it is important to remember the reason. It is 

done by noting the cause of blocking, such as a resource request or an  I/O operation, in the event 

information field of the PCB. Consider a process Pi that is blocked on an I/O operation on device d. The 

event information field in Pi’s PCB indicates that it awaits end of an I/O operation on device d. When the 

I/O operation on device d completes, the kernel uses this information to make the transition blocked → 

ready for process Pi. 

2. Define threads? Discuss User-level threads with neat sketch. 

Thread is defined as an execution of a program that uses the resources of a process. 2M 

  User-Level Threads 

User-level threads are implemented by a thread library, which is linked to the code of a process. The 

library sets up the thread implementation arrangement without involving the kernel, and itself interleaves 

operation of threads in the process. Thus, the kernel is not aware of presence of user-level threads in a 

process; it sees only the process. Most OSs implement the pthreads application program interface 

provided in the IEEE POSIX standard in this manner. 

An overview of creation and operation of threads is as follows: A process invokes the library function 

create_thread to create a new thread. The library function creates a TCB for the new thread and starts 

considering the new thread for “scheduling.” When the thread in the running state invokes a library 

function to perform synchronization, say, wait until a specific event occurs, the library function performs 

“scheduling” and switches to another thread of the process. Thus, the kernel is oblivious to switching 

between threads; it believes that the process is continuously in operation. If the thread library cannot find 

a ready thread in the process, it makes a “block me” system call. The kernel now blocks the process. It 

will be unblocked when some event activates one of its threads and will resume execution of the thread 

library function, which will perform “scheduling” and switch to execution of the newly activated thread. 

Scheduling of User-Level Threads Figure is a schematic diagram of scheduling of user-level threads. The 

thread library code is a part of each process. It performs “scheduling” to select a thread, and organizes its 

execution. We view this operation as “mapping” of the TCB of the selected thread into the PCB of the 

process. 
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Figure. Scheduling of User Level Threads 

 

The thread library uses information in the TCBs to decide which thread should operate at any time. To 

“dispatch” the thread, the CPU state of the thread should become the CPU state of the process, and the 

process stack pointer should point to the thread’s stack. Since the thread library is a part of a process, the 

CPU is in the user mode. Hence a thread cannot be dispatched by loading new information into the PSW; 

the thread library has to use non privileged instructions to change PSW contents. Accordingly, it loads the 

address of the thread’s stack into the stack address register, obtains the address contained in the 

programcounter (PC) field of the thread’s CPU state found in its TCB, and executes a branch instruction 

to transfer control to the instruction which has this address. 

3.   
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Figure 7.5 summarizes operation of the RR scheduler with δ = 1 second for the five processes shown in 

Table 7.2. The scheduler makes scheduling decisions every second. The time when a decision is made is 

shown in the first row of the table in the top half of Figure 7.5. The next five rows show positions of the 

five processes in the ready queue. A blank entry indicates that the process is not in the system at the 

designated time. The last row shows the process selected by the scheduler; it is the process occupying the 

first position in the ready queue. Consider the situation at 2 seconds. The scheduling queue contains P2 

followed by P1. Hence P2 is scheduled. Process P3 arrives at 3 seconds, and is entered in the queue. P2 is 

also preempted at 3 seconds and it is entered in the queue. Hence the queue has process P1 followed by P3 

and P2, so P1 is scheduled. 

 

 
The turnaround times and weighted turnarounds of the processes are as shown in the right part of the 

table. The c column shows completion times. The turnaround times and weighted turnarounds are inferior 

to those given by the non preemptive policies discussed because the CPU time is shared among many 

processes because of time-slicing. It can be seen that processes P2, P3, and P4, which arrive at around the 

same time, receive approximately equal weighted turnarounds. P4 receives the worst weighted turnaround 

because through most of its life it is one of three processes present in the system. P1 receives the best 

weighted turnaround because no other process exists in the system during the early part of its execution. 

Thus weighted turnarounds depend on the load in the system. 
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4.  Apply LCN scheduling method for the given below table and find the mean 

turnaround time and weighted turnaround time. Assume Time Slice of 1 Sec. 

Table.2 Processes for Scheduling 

Process P1 P2 P3 P4 P5 
Admission 
Time 

0 2 3 5 8 

Service Time 3 3 2 5 3 
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5. With neat diagram discuss Process states and their transition along 

with reasons of transitions. 
Process state: The indicator that describes the nature of the current activity of a process. 

The kernel uses process states to simplify its own functioning, so the number of process states and their 

names may vary across OSs. However, most Oss use the four fundamental states described in Table. The 

kernel considers a process to be in the blocked state if it has made a resource request and the 

request is yet to be granted, or if it is waiting for some event to occur. A CPU should not be allocated to 

such a process until its wait is complete. The kernel would change the state of the process to ready when 

the request is granted or the event for which it is waiting occurs. Such a process can be considered 

for scheduling. The kernel would change the state of the process to running when it is dispatched. The 

state would be changed to terminated when execution of the process completes or when it is aborted by 
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the kernel for some reason. A conventional computer system contains only one CPU, and so at most 

one process can be in the running state. There can be any number of processes in the blocked, ready, and 

terminated states. An OS may define more process states to simplify its own functioning or to support 

additional functionalities like swapping.  

 
 Process State Transitions A state transition for a process Pi is a change in its state. A state transition is 

caused by the occurrence of some event such as the start or end of an I/O operation. When the event 

occurs, the kernel determines its influence on activities in processes, and accordingly changes the state of 

an affected process. When a process Pi in the running state makes an I/O request, its state has to be 

changed to blocked until its I/O operation completes. At the end of the I/O operation, Pi’s state is changed 

from blocked to ready because it now wishes to use the CPU. Similar state changes are made when a 

process makes some request that cannot immediately be satisfied by the OS. The process state is changed 

to blocked when the request is made, i.e., when the request event occurs, and it is changed to ready when 

the request is satisfied. The state of a ready process is changed to running when it is dispatched, and the 

state of a running process is changed to ready when it is preempted either because a higher-priority 

process became ready or because its time slice elapsed. Table 5.4 summarizes causes of state transitions. 

Figure 5.4 diagrams the fundamental state transitions for a process. A new process is put in the ready state 

after resources required by it have been allocated. It may enter the running, blocked, and ready states a 

number of times as a result of events described in Table 5.4. Eventually it enters the terminated state. 
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6. Write a short notes on Scheduling Policies 
Nonpreemptive scheduling 

In nonpreemptive scheduling, a server always services a scheduled request to completion. Thus, 

scheduling is performed only when servicing of a previously scheduled request is completed and so 

preemption of a request never occurs. Non preemptive scheduling is attractive because of its simplicity—

the scheduler does not have to distinguish between an unserviced request and a partially serviced one. 

Since a request is never preempted, the scheduler’s only function in improving user service or system 

performance is reordering of requests. We discuss three non preemptive scheduling policies in this 

section: 

• First-come, first-served (FCFS) scheduling  

• Shortest request next (SRN) scheduling 

• Highest response ratio next (HRN) scheduling 

FCFS Scheduling 
Requests are scheduled in the order in which they arrive in the system. The list of pending requests is 
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organized as a queue. The scheduler always schedules the first request in the list. 

Shortest Request Next (SRN) Scheduling 

The SRN scheduler always schedules the request with the smallest service time. 

Thus, a request remains pending until all shorter requests have been serviced. 

 Preemptive scheduling 

In preemptive scheduling, the server can be switched to the processing of a new request before completing 

the current request. The preempted request is put back into the list of pending requests. Its servicing is 

resumed when it is scheduled again. Thus, a request might have to be scheduled many times before it 

completed. This feature causes a larger scheduling overhead than when non preemptive scheduling is 

used. We discussed preemptive scheduling in multiprogramming and time-sharing operating systems. 

Three preemptive scheduling policies are: 

• Round-robin scheduling with time-slicing (RR) 

• Least completed next (LCN) scheduling 

• Shortest time to go (STG) scheduling 

The RR scheduling policy shares the CPU among admitted requests by servicing them in turn. The other 

two policies take into account the CPU time required by a request or the CPU time consumed by it while 

making their scheduling decisions 

The RR policy aims at providing good response times to all requests. The time slice, which is designated 

as δ, is the largest amount of CPU time a request may use when scheduled. A request is preempted at the 

end of a time slice. To facilitate this, the kernel arranges to raise a timer interrupt when the time slice 

elapses. 

Least Completed Next (LCN) Scheduling 

The LCN policy schedules the process that has so far consumed the least amount of CPU time. Thus, the 

nature of a process, whether CPU-bound or I/O-bound, and its CPU time requirement do not influence its 

progress in the system. Under the LCN policy, all processes will make approximately equal progress 

in terms of the CPU time consumed by them, so this policy guarantees that short processes will finish 

ahead of long processes. Ultimately, however, this policy has the familiar drawback of starving long 

processes of CPU attention. It also neglects existing processes if new processes keep arriving in the 

system. So even not-so-long processes tend to suffer starvation or large turnaround times. 
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7. Discuss contiguous memory allocation and compare with Non-contiguous memory 

allocation 

Contiguous memory allocation: Contiguous memory allocation is the classical memory allocation 

model in which each process is allocated a single contiguous area in memory. Thus the kernel allocates a 

large enough memory area to accommodate the code, data, stack, and PCD data of a process as shown in 

Figure 11.9. Contiguous memory allocation faces the problem of memory fragmentation. In this section 

we focus on techniques to address this problem. Relocation of a program in contiguous memory allocation 

and memory protection. 

Handling Memory Fragmentation Internal fragmentation has no cure in contiguous memory allocation 

because the kernel has no means of estimating the memory requirement of a process accurately. The 

techniques of memory 
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 Noncontiguous memory allocation: Modern computer architectures provide the noncontiguous memory 

allocationmodel, in which a process can operate correctly even when portions of its address space are 

distributed among many areas of memory. This model of memory allocation permits the kernel to reuse 

free memory areas that are smaller than the size of a process, so it can reduce external fragmentation. 
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Noncontiguous memory allocation using paging can even eliminate external fragmentation completely. 

We use the term component for that portion of the process address space that is loaded in a single memory 

area. 

 

 

 
 

 

 


