Section-A,B,C,D Subcode:18EC643

1. Define a binary Tree and state and prove four properties of binary tree. Draw the binary expression
trees for the following expressions

11.3 PROPERTIES OF BINARY TREES

Property 11.1 The drawing of every binary tree with n elements, n > 0, has
eractly n = 1 edges.

Proof Every element In a binary tree (except the root) has exactly one parent.

There is exactly one edge between each child and its parent. So the number of edges
isn—1.]

Property 11.2 A binary tree of height h, h > 0, has at least h and at most 2" =1
elements in it,

Proof Since each level has at least one element, the number of elements is at least
h. As each element can have at most two children, the number of elements at level
i is at most 2'~1, i > 0. For h = 0, the total number of elements is 0, which equals
20 — 1, For h > 0, the number of elements cannot exceed 1 2¢=1 =2 -1, &

Property 11.3 The height of a binary tree that contains n, n > 0, elements is at
most n and at least [logg(n + 1)].

Proof Since there must be at least one element at each level, the height cannot
exceed n. From Property 11.2 we know that a binary tree of height h can have no
more than 2" — 1 elements. So n < 2" — 1. Hence h > logy(n + 1). Since h is an
integer, we get A > [logy(n + 1)]. []

A binary tree of height h that contains exactly 2" — 1 elements is called a full
binary tree. The binary tree of Figure 11.5(a) is a full binary tree of height 3.
The binary trees of Figures 11.5(b) and (c) are not full binary trees. Figure 11.6
shows a full binary tree of height 4.

i) (a*b)+(eid) ii)(a+bic—d)+e+gsha

Al == S

2. Mention four common ways to traverse binary tree.Implement C++ functions for each
traversal method.

The basic operations that can be performed on a binary search tree data structure, are the
following -

° Insert - Inserts an element in a tree/create a tree.

e Search - Searches an element in a tree.

e Preorder Traversal — Traverses a tree in a pre-order manner.

o Inorder Traversal - Traverses a tree in an in-order manner.

o Postorder Traversal — Traverses a tree in a post-order manner.

Inorder Traversal

In the in-order traversal, the left subtree is visited first, then the root, and later the right
subtree.

Algorithm:
Step 1- Recursively traverse the left subtree
Step 2- Visit root node

Step 3- Recursively traverse right subtree

Left Subtree Right Subtree

D->B->E->A->F->C->G

Pre-Order Traversal

In pre-order traversal, it visits the root node first, then the left subtree, and lastly right subtree.
Algorithm:

Step 1- Visit root node

Step 2- Recursively traverse the left subtree

Step 3- Recursively traverse right subtree

Left Subtree Right Subtree

A-=B-=D-=E->=C-=F -GG

Post-Order Traversal
It visits the left subtree first in post-order traversal, then the right subtree, and finally the root node.
Algorithm:
Step 1- Recursively traverse the left subtree
Step 2- Visit root node

Step 3- Recursively traverse right subtree

Left Subtrec Right Subtree

D->E>B->F->G->C ->A

o+ Vee - oude 'é’rraue/r,sal,

Vold Dae Ovde Cbum'fﬁrree,/\/o&e <T> #4)
{ -bf (&)= NULL)

t viset ()) Visck toree aool

Pae qudefr (£ —> o ft chidd) » /o Lept 5:45&7”66
Pae Oader (£ —> ‘7‘7hl'dul09 A o 77}72‘/’ Lubtaee

k

éecmplaée 4 closs T
Vow{’ LnOydes Cbbm‘7/‘f€€fv0£a LT> % :9

{ e Q'/ /\/uu)

{ otrder (£ defichitd) [do M%ﬁrw
Vistt (£) ; // Visit éeree ot

in Onder (£— frjl;tduld’) . //do*?’?hﬁ Subbiyee
i
§

Pofsé' Eavieqsal.

fecm?)W £ Closs T>
0.uf Po,sw‘rfa‘f Cbbm‘rilffeel\/ode,(Iy % :@

{ ,f (&= NokL)

{
DostOvde (£ ueau@;
Dot Grdes (£ — V%Ea\r@;
Visit CE)s

2

3

Vit ot
-tdm?laté < ¢losh T>
Vedd Vist C&mrr; TweeNede ATy » 39

Coukr & 2 = eleament ;

1

Develop a C++ template class to implement circular queve in array representation. Define
3. member functions for push and pop operations.

Write and explain a C++ program that inputs a string and outputs the pair of matched
parenthesis as well as those parenthesis for which there is no maich,

Ln this problem we are to match the left and right parentheses in a character string,
For example, the string (a#(b¥c)+4) his Jeft parentheses at. positions 0 and § and
right parentheses at positions 7 and 10, The left parenthesis at position 0 matches
the right at position 10, while the Jeft parenthests at postion & matches the righ
parenthesis at position 7. In the strng (a#b)) (., the right parenthess at pasition

void printMatchedPairs(string expr)
{// Parenthesis matching.
arrayStack<int> s;
int length = (int) expr.size();

// scan expression expr for (and)
for (int 1 = 0; i < length; i++)
if (expr.at(i) == (')
s.push(i);
else
if (expr.at(i) == ')’)
try 1
{// remove location of matching '(' from stack
cout << s.top() << ' ' << i << endl;
s.pop(); // unstack match
}

5. Explain stack application Tower Hanoi with neat diagrams and c++ program.

Tower of Hanoi is a mathematical puzzle where we have three rods and n disks. The
objective of the puzzle is to move the entire stack to another rod, obeying the following
simple rules:
Only one disk can be moved at a time.
Each move consists of taking the upper disk from one of the stacks and placing it on top of
another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.
No disk may be placed on top of a smaller disk.
Objective of Tower of Hanoi:
The Objective of the puzzle is to move all the discs from one Rod (Source Rod) to another
Rod (Destination Rod) with the help of third Rod (Auxiliary Rod) but they must follow the
listed rules below.
During single iteration only one disc can be moved,i.e. you cannot move more than one discs
at a time.

You cannot place a larger disc over a smaller disc.

void toversOffanoi(int n, int x, int y, int 2)
{// Move the top n disks from tower x to tover y.
// Use tower z for intermediate storage.

if (n>0)

{

tovers0fHanoi (n-1, x, z,),

cout << "Move top disk from tower " << x
<" to top of tower " <Cy << andl;

toversOffanoi(n-1, z, y, ¥);

Tracing for 3 Discs

- (13) (1-2) 32) (13) (2-1) (2-3) (1-3)

(1-3)
Tracing for 3 Discs

- (13) (1-2) 3-2) (1-3) (2-1) (2-3) (163)

1 2

Done

6. Draw the binary expression trees corresponding to each of the following ex-
pressions:
(a) (a+b)/(c—d)+e+g=h/fa
(b) —z—yrz+(a+b+c/d=xe)
(e) ((a+b) > (c—e)lla < blede(r < ylly > 2)

Wﬁte a mgihc:_:-d for ‘_pu_sh’ Emd _‘pop’ f_{}f iin_k_ed queue.

= = * " ———mWULLE = = =

T | '.
theFront theBack ----4
(a) Pushing into Figure 9.8(a)

NULL = = e = — —
I
theFront theBack -----

(b) Pushing into Figure 9.8(b)

: !
theFront - - --d theBack

(a) Popping from Figure 9.8(a)

_%L‘!\h - | T '

theFront----4 Be:mmes NULL theBack
(b) Popping from Figure 9.8(b)

Figure 9.10 Popping an element from a linked queue

template<class T>
void linkedQueuwe<T>::push({const Tk theElement)
{7/ Add theElement to back of queue.

S create node for new element

chainNode<T>=*= newNode = new chainNode<T>{theElement, NULL);

f{ add mew node to back of gueue
if (gueueSize == 0)

queueFront = newNode; A gueve empty
alse

queueBack-r*next = newNode; // gueue not empty
gueueBack = newNode;

queunaesSize++ ;

template<class T>

void linkedQueue<T>::pop()
{// Delete front element.
if (queueFront == NULL)

throw queueEmpty();

chainNode<T>#* nextNode = gqueueFront->next;

delete gqueusFront;
queueFront = nextNode;
gqueuaSize--;

}

7. Write a structure of binary tree node.

 template<cam T>
 Qeauck éfmrry‘ﬁredvoo(a

T element % , o
L2 o FareeNode LT *ué—c}n:ld’ oe Tiyhbcm[d 2

bieoery ToreeNode (> { leptohild = Fignrchitd = Nors.: 7

¢y .
Ca bfna'ry?'ﬂ«‘—/\’o&@omt T¢ bheglomend)
{ ement = Bae&ﬂomeni—;
deptchild = ‘7’1‘7hfc‘}zifd:NULL;
} .
£ Lémary TreeNode (Const T4 thellesnent, binanjTreenode xthebebdulld,
) 7 bim'ryr«cn/odr. #theRi MQ

{ Ce(_mmk = éhéﬁh,mem‘:;
il = the)eptenild;

v?htdh"lo(z éhc??;?ht'dul(o(g

} ;

5

s, Define Heap. Explain insert operations using max heap.

9. What s Heap data structure explains with flow diagrams.
A heap is a complete binary tree in which the value of a node is less than all the values in its

sub trees.
By convention, the smallest element is the one with the highest priority

10. What is Tree explain types of tree explain terminology with neat diagrams.

The tree is a nonlinear hierarchical data structure and comprises a collection of entities
known as nodes. It connects each node in the tree data structure using "edges”, both
directed and undirected.

{\ Node

{ "\ Edge

Parent Node: The node which is a predecessor of a node is called the parent node of that
node. {2} is the parent node of {6, 7}.

Child Node: The node which is the immediate successor of a node is called the child node of
that node. Examples: {6, 7} are the child nodes of {2}.

https://www.simplilearn.com/the-power-of-decision-trees-in-machine-learning-article

Root Node: The topmost node of a tree or the node which does not have any parent node is
called the root node. {1} is the root node of the tree. A non-empty tree must contain exactly
one root node and exactly one path from the root to all other nodes of the tree. Degree of a
Node: The total count of subtrees attached to that node is called the degree of the node.
The degree of a leaf node must be 0. The degree of a tree is the maximum degree of a node
among all the nodes in the tree. The degree of the node {3} is 3.

Leaf Node or External Node: The nodes which do not have any child nodes are called leaf
nodes. {6, 14, 8, 9, 15, 16, 4,11, 12, 17, 18, 19} are the leaf nodes of the tree.

Ancestor of a Node: Any predecessor nodes on the path of the root to that node are called
Ancestors of that node. {1, 2} are the parent nodes of the node {7}

Descendant: Any successor node on the path from the leaf node to that node. {7, 14} are
the descendants of the node. {2}.

Sibling: Children of the same parent node are called siblings. {8, 9, 10} are called siblings.
Depth of a node: The count of edges from the root to the node. Depth of node {14} is 3.
Height of a node: The number of edges on the longest path from that node to a leaf. Height
of node {3} is 2.

Height of a tree: The height of a tree is the height of the root node i.e the count of edges
from the root to the deepest node. The height of the above tree is 3.

Level of a node: The count of edges on the path from the root node to that node. The root
node has level 0.

Internal node: A node with at least one child is called Internal Node.

Neighbour of a Node: Parent or child nodes of that node are called neighbors of that node.
Subtree: Any node of the tree along with its descendant

Terminology
Root

Parent Node
Child Node

Leaf
Edge

Siblings
Path [

Traversing

Height of
Node

Levels of node

Degree of
Node

Sub tree

Description

Root is a special node in a tree. The entire tree originates
from it. It does not have a parent.

Parent node is an immediate predecessor of a node.
All immediate successors of a node are its children.
Node which does not have any child is called as leaf

Edge is a connection between one node to another. Itis a
line between two nodes or a node and a leaf.

Nodes with the same parent are called Siblings.

Path is a number of successive edges from source node to
destination node.

Height of a node represents the number of edges on the
longest path between that node and a leaf.

Level of a node represents the generation of a node. If the
root node is at level 0, then its next child node is at level 1, its

grandchild is at level 2, and so on

Degree of a node represents the number of children of a
node.

Descendants of a node represent subtree.

11. Write push and pop operation of queue using an array

template<class T>
void arrayQueue<T>::push{const T& theElement)
{// Add theElement to queue.

// increase array length if necessary
if ((queueBack + 1) } arraylLength == queueFront)
{// double array length
// code to double array size comes here
}

/{ put theElement at the queueBack of the queue
queueBack = (gueueBack + 1) ¥ arraylLength;
queue [queueBack] = theElement;

}

void pop()
{// renove queueFront element
if (queueFront == queueBack)
throv queueBapty();
queveFront = (queueFront + 1)) arraylength;
queue [queueFront] . “T(); // destructor for T

}

Draw the binary expression trees corresponding to each of the following ex- -
pressions:

(8) (a+b)/{c—d)+e+g=hja

(b) —z—ysz+(a+b+c/d=*e)

(€) ((a+b) > (c —e))lla < biek(z < ylly > 2)

