	UTE OF VOLOGY		USN						CORRESTITUTE OF THE PROCESSION OF THE	CMRIT
			Internal	Assesment Test	- III					
Sub:	Е	Ingineering S	tatistics an	d Linear Algeb	ra		Co	ode	18EC44	
Date:	27.082022 Duration: 90 mins Max Marks: 50 Sem: I Bra						nch:	EC		
		Answer a	any five qu	estions	ı	•		Marks	CO	RBT
p W	The joint pmf of a bivariate random variable is given by $p(x, y) = \begin{cases} k(x + 2y), & x = 1,2; y = 1,2 \\ 0, & \text{otherwise} \end{cases}$ Where k is a constant. Find the value of k. Find the marginal pmf of X and Y. Are X and Y independent?					10	CO2	L3		
2 Pr	Prove that correlation coefficient $\rho_{XY} = \pm 1$						10	CO2	L3	
Consider the two dimensional random variables X and Y, related to two dimensional random variables P and Q by P = 4X+2Y, Q=X+2Y, X and Y have zero means and $\sigma_X^2 = 9$, $\sigma_Y^2 = 4$, $\rho_{XY} = -0.5$. Obtain ρ_{PQ}						10	CO2	L3		

CMR										STHO 25 YEARS	٠,
INSTITUTE OF			USN							. centalos	CMRIT
TECH	INOLOGY		_				l l			* CAR INSTITUTE OF TECHNOLOGY, RENGALURU. ACCREDITED WITH A+ GRADE BY MAAC	
			Internal	Assesment T	est - III						
Sub: Engineering Statistics and Linear Algebra Cod						ode	18EC44				
Date:	27.08.2022	Duration:	90 mins	Max Mark	s: 50	Sem:	I	EC			
	•	Answer a	any five qu	estions					Marks	СО	RBT
1 The joint pmf of a bivariate random variable is given by							10	CO2	L3		
$p(x, y) = \begin{cases} k(x+2y), x = 1,2; y = 1,2\\ 0, otherwise \end{cases}$											
Where k is a constant. Find the value of k. Find the marginal pmf of X and Y.											
A	Are X and Y independ	ent?									
Prove that correlation coefficient $\rho_{XY} = \pm 1$						10	CO2	L3			
3 Consider the two dimensional random variables X and Y, related to two					10	CO2	L3				
dimensional random variables P and Q by $P = 4X+2Y$, $Q=X+2Y$, X and Y have											
zero means and $\sigma_X^2 = 9$, $\sigma_Y^2 = 4$, $\rho_{XY} = -0.5$. Obtain ρ_{PQ}											
									1		

4	Define autocorrelation and state the properties of ACF.	5+5	CO3	L3
5	Show that the random process $X(t) = 10\cos(100t + \theta)$ is wide sense stationary if it is uniformly distributed in the range $-\pi$ to π .	10	CO3	L3
6.	$X(t)$, $Y(t)$ are zero mean jointly WSS process. The random process $Z(t) = 4X(t) + 6Y(t)$. Find the correlation function $R_Z(\tau)$, $R_{ZX}(\tau)$ $R_{YZ}(\tau)$, $R_{XZ}(\tau)$,	10	CO3	L3
7.	. Consider the random experiment of tossing the fair coin twice. Let the random variables X and Y be defined as follows: $X(s)$ is 1 when two coins behave in the same way and it is zero it it is otherwise. $Y(s)$ is the number of tails observed. Find R_X , R_Y , joint pmf and conditional pmf.	10	CO2	L3

4	Define autocorrelation and state the properties of ACF.	5+5	CO3	CO2	L3
5	Show that the random process $X(t) = 10\cos(100t + \theta)$ is wide sense stationary if it	10	CO3	CO2	L3
	is uniformly distributed in the range $-\pi$ to π				
6.	X(t), Y(t) are zero mean jointly WSS process. The random process	10	CO3	CO2	L3
	$Z(t) = 4X(t) + 6Y(t)$. Find the correlation function $R_Z(\tau)$, $R_{ZX}(\tau)$ $R_{YZ}(\tau)$,				
	$R_{XZ}(\tau), R_{Zy}(\tau)$				
7.	. Consider the random experiment of tossing the fair coin twice. Let the random variables X and Y be defined as follows: $X(s)$ is 1 when two coins behave in the same way and it is zero it it is otherwise. $Y(s)$ is the number of tails observed. Find R_X , R_Y , joint pmf and conditional pmf.	10	CO2	CO2	L3

$$y = ax + b$$

$$xy = ax^{2} + bx$$

$$E(xy) = E(ax^{2} + bx)$$

$$= aE(x^{2}) + bE(x)$$

$$= aE(x^{2}) + bE(x) - E(x)(aE(x) + b)$$

$$= aE(x^{2}) + bE(x) - E(x)(aE(x) + b)$$

$$= aE(x^{2}) - a(E(x))^{2} = a(E(x^{2}) + E(x))$$

$$= aE(x^{2}) - a(E(x))^{2} = a(E(x^{2}) + E(x))$$

$$= a = x^{2}$$

$$y = ax + b$$

$$= a = (x^{2}) - a(E(x))^{2} = a(E(x^{2}) + E(x))$$

$$= a = x^{2}$$

$$y = ax + b$$

$$= a = (x^{2}) - a(E(x))^{2} = a(E(x) + E(x))$$

$$= a = x^{2}$$

$$= a =$$

1xy = -0.5 $P = \alpha x + b y$ g = c x + d ya= | b=2 c=1 d=2 57=9 57=4 Ry=-05 M=0 M=0 5x=3 5 y = h $\int_{A}^{A} = \frac{cov(+y)}{cov(+y)} \Rightarrow cov(+y) = \int_{A}^{A} \frac{c}{y} =$ =(-0.5)(4) Variance of 1 = 2 = 2 = 2 + 2 ab cov(xy) + 6 = 3 = 16(9)+2(4)(2)(-6)++(4) =)44 - 96 + 16 = 64 = = = = + 2 cd cov (xy) + d2 = y $= 1^{2}(9) + 2(1)(2)(-6) + 2^{2}(4)$ = 9-2++16=1 cov(PQ) = acox + (bc+ad)cov(xy)+bdox = (4)(1)(9)+ (2)(1)+(4)(6)) (-6) + (2)(2)(4) = 36 + (-48) + 16 = 4 $P_{PQ} = \frac{Cov(PQ)}{6p6q} = \frac{4}{\sqrt{64}} = \frac{1}{8} = \frac{1}{2}$ = 0.5

$$C) = \sum_{k} (k) + 6 \times (k)$$

$$Z(k+1) = k \times (k) + 6 \times (k)$$

$$P_{Z}(t) = E[Z(k) \times (k) + 6 \times (k) + 6$$

$$P_{ZY}(T) = E[(++(b)+6+(b)) y(b+0)]$$

$$= + E[+(b)y(b+0)] + 6 E[y(b) y(b+0)]$$

$$= + E[+(b)y(b+0)] + 6 E[y(b) y(b+0)]$$

$$= + E[+(b) + (b+0)] + 6 E[+(b) + (b+0)]$$

$$= + E[+(b) + (b+0)] + 6 E[+(b) + (b+0)]$$

$$= + E[+(b) + (b+0)] + 6 E[+(b) + (b+0)]$$

$$= + E[+(b) + (b+0)] + 6 E[+(b) + (b+0)]$$

$$= + E[+(b) + (b+0)] + 6 E[+(b) + (b+0)]$$

$$= + E[+(b) + (b+0)] + 6 E[+(b) + (b+0)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+0)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+0)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+0)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + 6 E[+(b) + (b+1)]$$

$$= + E[+(b) + (b+1)] + (b+1)$$

$$= + E[+(b) + (b+1)] + (b+1$$

	0 0 1	1/2 0	1/2	M.D of)
W.D of x	X 10	1/2 /2 P P2		F(4) 1/4 1/2 Q1	12 1
	too	= 0	ナーシャ	1	

$$\frac{\cos^{2}}{2} = \frac{2}{2} + \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} =$$

$$\frac{x=0}{y_{+}} = \frac{y_{+}}{y_{+}} = 0$$

$$\frac{y=1}{y_{+}} = \frac{y_{+}}{y_{+}} = 1$$

$$\frac{y=1}{y_{+}} = \frac{y_{+}}{y_{+}} = 1$$

$$\frac{y=1}{y_{+}} = \frac{y_{+}}{y_{+}} = 1$$

$$\frac{y=1}{y_{+}} = \frac{y_{+}}{y_{+}} = 0$$

$$\frac{y=2}{y_{+}} = 0$$