1. Write an assembly language program to transfer “HELLO WORLD?” serially at
9600 baud, 8-bit data, 1 stop bit, do this continuously.

MOV TMOD,#20H ;timer |,mode 2(auto reload), TMOD = 0010 0000

MOV TH1.,#-3

MOV SCON.#50H

SETB TR1

AGAIN: MOV A #H'

‘'TH1=FDH, 9600 baud rate

:8-bit, 1 stop, REN enabled

;start timer |

:Load ASCII value of “H” in Accumulator

ACALL TRANS :call transmit subroutine
MOV A#'E' :transfer “E”

ACALL TRANS :call transmit subroutine
MOV A #'L' transfer “L"

ACALL TRANS ; call transmit subroutine
MOV A#'L' :transfer “L"

ACALL TRANS : call transmit subroutine
MOV A#O' ;transfer <“O”

ACALL TRANS ; call transmit subroutine
MOV A#"' :Load ASCII value of space *°
ACALL TRANS ;call transmit subroutine
MOV A #'W' ;transfer “W™

ACALL TRANS ; call transmit subroutine
MOV A#0O' :transfer “O”

ACALL TRANS ; call transmit subroutine
MOV A#R' :transfer “R”

ACALL TRANS : call transmit subroutine
MOV A#'L :transfer “L”

ACALL TRANS ; call transmit subroutine
MOV A#D' transfer “D”

ACALL TRANS ; call transmit subroutine
MOV A#"' ;Load ASCII value of space *°
ACALL TRANS :call transmit subroutine
SIMP AGAIN :keep doing it

TRANS: MOV SBUF,A
HERE: INB TI,HERE

CLR TI
RET
END

:serial data transfer subroutine
:load ASCII value of character into SBUF
;wait for the TI=1 (set)

2.a Explain full duplex, half duplex and simplex serial data transfer.

Simplex, Half Duplex, and Full Duplex are the mode of transmission in which the
data send and receive. In this communication, there 1s one sender and one receiver to
communicate or you can say there is one source and destination to send and receive
the data.

1. Simplex Mode —

In Simplex mode, the data communication is unidirectional, Only one of the two
devices on a link can transmit, the other can only receive.

Example: Keyboard and traditional monitors. The keyboard can only introduce input,
the monitor can only give the output.

2. Half-Duplex Mode —

In half-duplex mode, each data can be transmitted and received between two devices
(stations), but not at the same time. When one device is sending, the other can only
receive, and vice versa. The half-duplex mode is used in cases where there is no
need for communication in both directions at the same time.

Example: Walkie-talkie in which message is sent one at a time and messages are
sent in both directions.

2. Full-Duplex Mode —

[n full-duplex mode, both devices can transmit and receive simultaneously.
Example: Telephone Network in which there i1s communication between two
persons by a telephone line, through which both can talk and listen at the same
time.

o ww AN A Wl

Simplex Transmitter —| Receiver
Half Duplex Transmitter - | Receiver
Receiver / - Transmitter
Full Duplex Transmitter »| Receiver
Receiver |« Transmitter

Figure 10-2. Simplex, Half-, and Full-Duplex Transfers

2.b Develop an 8051 C program to toggle the bits of Port 1 to turn OFF and ON LED
connected to the port 1.
Solution:
#include<reg51.h>
void main(void)

{
unsigned int x;
while(1)
1
P1=0x55; //P1=55H or 00H
for(x=0;x<50000;x++); //Undefined delay
P1=0xAA; //P1=AAH or FFH
for(x=0;x<50000;x++); //Undefined delay
|
}

3. Explain the bit contents of TCON and SCON registers in detail.

TCON (Timer/Counter) Register (Bit-addressable)

TFL | TRL | TFO | TRO | IE1 | M1 | IEO | 7O

TF1 TCON.7 Timer 1 overflow flag. Set by
hardware when timer/counter
1 overflows. Cleared by hardware as
the processor vectors to the interrupt
service routine

TR1 TCON.6 Timer 1 run control bit. Set/cleared by
software to turn timer/counter 1 on/off

TF0O TCON.5 Timer 0 overflow flag. Set by
hardware when timer/counter 0
overflows. Cleared by hardware as the
processor vectors to the interrupt
service routine

TRO TCON.4 Timer O run control bit. Set/cleared by
software to turn timer/counter 0 on/off _

D7 DO
TF1 ‘ TR1 ‘ TFO] TRO | IE1 ‘ Im ’ IEQ ‘ o

1IE1 TCON.3 External interrupt 1 edge flag. Set by
CPU when the external interrupt edge
(H-to-L transition) is detected. Cleared
by CPU when the interrupt is processed

ITi TCON.2 Interrupt 1 type control bit. Set/cleared
by software to specify falling edge/low-
level triggered external interrupt

1EOD TCON.1 External interrupt 0 edge flag. Set by
CPU when the external interrupt edge
(H-to-L transition) is detected. Cleared
by CPU when the interrupt is processed

ITO TCON.0 Interrupt O type control bit. Set/cleared
by software to specify falling edge/low-
level triggered external interrupt

SCON Register:

a2 SCON is an 8-bit register used to
program the start bit, stop bit, and data
bits of data framing, among other
things

SMO0 ‘ SM1 SM2 REN ‘ TBS8 ‘ RB8 TI ‘ RI

SMO SCON.7 Serial port mode specifier

SM1 SCON.6 Serial port mode specifier

SM2 SCON.5 Used for multiprocessor communication

REN SCON.4 Set/cleared by software to enable/disable reception

TB8 SCON.3 Transmitted bit 8. Set/cleared by program in mode 2 or 3

RB8 SCON.2 Received bit 8. Bit 8 of received data in modes 2 and 3;
stop bit in mode 1. Not used in mode 0.

TI SCON.1 Transmit interrupt flag. Set to one at the beginning of
stop bit in mode 1

Rl SCON.O Receive interrupt flag. Set to one at halfway through

stop bit in mode 1

a2 SMO, SM1
» They determine the framing of data by
specifying the number of bits per character,
and the start and stop bits

0 0 Serial Mode 0
1 9 : . Onlv mode 1 i
1 - i) of L{l[c‘i';‘ﬂ ‘tu '1|-;
o SM2
» This enables the multiprocessing capability
of the 8051

a REN (receive enable)

» It is a bit-adressable register
= When it is high, it allows 8051 to receive data on
RxD pin
= If low, the receiver is disable

a TI (transmit interrupt)
» When 8051 finishes the transfer of 8-bit

character

= It raises TI flag to indicate that it is ready to
transfer another byte

= TI bit is raised at the beginning of the stop bit

a RI (receive interrupt)

~» When 8051 receives data serially via RxD, it
gets rid of the start and stop bits and
places the byte in SBUF register

= It raises the RI flag bit to indicate that a byte
has been received and should be picked up
before it is lost

= RI is raised halfway through the stop bit

4. Assume XTAL = 11.0592 MHz. Use timer 0 interrupt to create the square wave.
Write a C program that continuously get single bit of data from P1.7 and sends it
to P1.0 while simultaneously creating a square wave of 200 ps period on pin 2.5

Solution:
We will use timer 0 in mode 2 (auto-reload). One half of the period is 100 ps.
100/1.085 ps =92, and THO = 256 - 92 = 164 or A4H.

#include<reg51.h>

sbit SW = P17, //define single bit using sbit data type and

sbit LED = P10, //sbit should be declared out of main program (globally)
sbit WAVE = P2"5;

void timerO(void) interrupt 1

{

j

void main()

WAVE=WAVE; /itoggle pin

{
SW=1; // Make switch (P1.4) as input
TMOD=0x02; //Configure Timer 0 in Mode 2 (8-bit auto reload mode)
THO=0xA4; //Load the initial Count value in THO
[E=0x82; //Enable the Timer0 Interrupt
TRO=1; //Start Timer 0
while(1) //Repeat Continuously
{
LED = SW; /I Read switch and send to LED
b

5a. Explain the following, 1. Interrupt 11, ISR iii. [VT (Interrupt Vector Table)
List the types of interrupts and their vector locations in 8051.
Solution:

i. Interrupt:
An interrupt is an external or internal event that interrupts the microcontroller to

inform it that a device needs its service.

Whenever any device needs its service, the device notifies the microcontroller by
sending it an interrupt signal. Upon receiving an interrupt signal, the microcontroller
interrupts whatever it i1s doing and serves the device.

ii. ISR:
The program which is associated with the interrupt is called the interrupt service

routine (ISR) or interrupt handler.

iii. IVT (Interrupt Vector Table) :
When an interrupt is invoked, the microcontroller runs the interrupt service routine.
For every interrupt, there is a fixed location in memory that holds the address of its

ISR.
The group of memory locations set aside to hold the addresses of ISRs is called

interrupt vector table (IVT).

8051 interrupts and their vector locations are listed in the table below.

Interrupt Vector Table for the 8051

Interrupt ROM Location (Hex) Pin Flag Cleariﬂi
Reset 0000 9 Auto

External hardware interrupt 0 (INT0) 0003 P3.2 (12) Auto

Timer 0 interrupt (TF0) 000B Auto

External hardware interrupt | (INT1) 0013 P3.3 (13) Auto

Timer | interrupt (TF1) 001B Auto

Senial COM interrupt (RI and TI) 0023 Programmer

clears it.

5b. Write the instructions to,
1. enable the serial interrupt, timer O interrupt and external hardware interrupt 1,
11. disable the timer 0 interrupt,
iii. disable all interrupts with a single instruction.

IE (Interrupt Enable) Register
D7 DO
EA - ET2 ES ETl | EX1 | EID | EXO

EA (enable all) must be set to 1 in order

for rest of the register to take effect

EA IE.7 Disables all interrupts
-- IE.6 Not implemented, reserved for future use

ET2 1IE.5 Enables or disables timer 2 overflow or capture
interrupt (8952)

ES IE4 Enables or disables the serial port interrupt
ET1 1IE.3 Enables or disables timer 1 overflow interrupt
EX1 1E.2 Enables or disables external interrupt 1

ETO IE.1 Enables or disables timer 0 overflow interrupt
EX0O IE.0 Enables or disables external interrupt 0

Solution:
1. enable the serial interrupt, timer O interrupt and external hardware interrupt 1:
SETBIE.7 ;Enable all interrupts
SETBIE.4 ;enable the serial interrupt
SETB IE.1 ; enable timer 0 interrupt
SETBIE.2 ; enable external hardware interrupt 1

Or, You can write

MOV IE#10010110B;

11. disable the timer O interrupt,
CLR IEI

ii1. disable all interrupts with a single instruction.
CLR IE.7

Or

MOV IE,#00H

6.a Explain the importance of TI and RI flag in serial communication. Write the
programming steps for serial transmission and reception.

Importance of the Tl flag

To understand the importance of the role of TI, look at the fo}lowing
sequence of steps that the 8051 goes through ?n tmpsmnttmg a charac.lelr via TxD.
I. The byte character to be transmitted is written into the SBUF register.

The start bit is transferred.

2 A ;
i . rred bit at a time.
i. The 8-bit character is transfe du:::g the transfer of the stop bit that the 8051

iti Ctis :
L}i‘:c z“:};:eb“lr[llil :’Z‘?ﬁze?), indicating that the last character was transmitted
and it is ready to transfer the ':::LCIT::; we are not overloading the SBUF
5. By monitoring the Tl flag, we MiE sthc SBUF register before T1 is raised, the
register. If we write another byte nt bute will be lost. In other words, when
untransmitted portion of the previous yee
the 8051 finishes transferring a byte, it raises the TI flag to indicate it is ready
for the next character.
6. Afier SBUF is loaded with a new byte, the TI flag bit must be forced to 0 by
the “CLR TI” instruction in order for this new byte to be transferred.

Importance of the Rl flag bit
In receiving bits via its RxD pin, the 8051 goes through the following
steps.

I. It receives the start bit indicating that the next bit is the first bit of the charac-
ter byte it is about to receive.

2. The 8-bit character is received one bit at time. When the last bit is received, a
byte is formed and placed in SBUF.

3. The stop bit is received. When receiving the stop bit the 8051 makes RI = |,
indicating that an entire character byte has been received and must be picked
up before it gets overwritten by an incoming character,

4. By checking the RI flag bit when it is raised, we know that a character has been
received and is sitting in the SBUF register. We copy the SBUF contents to a
safe place in some other register or memory before it is lost.

5. Afier the SBUF contents are copied into a safe place, the RI flag bit must be
forced to 0 by the “CLR RI” instruction in order to allow the next received

character byte to be placed in SBUF. Failure to do this causcs loss of the
received character.

6.B Write the programming steps to program timer | in Mode 2.
Solution:
1. Load the TMOD register with 20H to use the timer 1 in mode 2.
2. Load the TH1 registers with the initial count value. The 8051 gives a copy of
it to TL1.
3. Start timer using SETB TR
After the timer is started, it starts to count up by incrementing the TL1
register. It counts up until it reaches its limit of FFH, When it rolls over from

FFH to 00H, it sets high the TF1 (timer 1 flag).

4. Keep monitoring the timer flag (TF1) with the JNB TF1, target instruction to
see whether it is raised. Get out of the loop when TF1 goes high.

5. Once TL1 register rolls from FFH to O0H and TF is set to 1, TL1 is reloaded
automatically with the original value kept by the TH1 register.

6. To repeat the process, clear TF1 and Go back to Step 4, since mode 2 is auto

reload.

EA-

'yt

Overflow

TF [

R Reload 1 goes high

C/T=0
when FF = 0

7a. Write a C program for the 8051 to transfer “YES” serially at 4800 bauds, 8-bit
data, 1 stop bit, do this continuously.

#include<reg51.h>

void main(void)

{
TMOD=0x20; // TIMER 1 IN MODE 2
THI1=0xFA; //4800 BAUD RATE
SCON=0X50; //8-bit, 1 stop, REN enabled
TRI1=1; /{Start Timer 1
while(1) //Repeat Continuously
i
SBUF='Y"; /[Load ASCII value of Y in SBUF
while(TI==0); /fwait for the TI=1 (set)
TI=0; //Clear TI flag
SBUF='E"; //Load ASCII value of E in SBUF
while(TI==0);
TI=0;
SBUF='S"; //Load ASCTI value of S in SBUF
while(TI==0);
TI=0;
}

7b. Explain in detail the structure of IE register.

IE (Interrupt Enable) Register

D7
EA

ES

ET1
EX1
ETO
EX0

IE.7
IE.6
IE.5

IE.4
IE.3
IE.2
IE.1
IE.O

DO
ET2 ES ET1 EX1 ETO EXO

EA (enable all) must be set to 1 in order

for rest of the register to take effect

Disables all interrupts
Not implemented, reserved for future use

Enables or disables timer 2 overflow or capture
interrupt (8952)

Enables or disables the serial port interrupt
Enables or disables timer 1 overflow interrupt
Enables or disables external interrupt 1
Enables or disables timer 0 overflow interrupt
Enables or disables external interrupt 0

o To enable an interrupt, we take the
following steps:
Bit D7 of the IE register (EA) must be set

to high to allow the rest of register to
take effect

The value of EA

1.

»

If EA = 1, interrupts are enabled and will be
responded to if their corresponding bits in IE
are high

If EA = 0, no interrupt will be responded to,

even if the associated bit in the IE register is
high

8a. Assume that the INT1 pin is connected to a switch that is normally high.
Whenever it goes low, it should turn ON an LED. The LED is connected to P1.3
and is normally OFF. When it is turned on it should stay ON for a fraction of a
second. As long as the switch is pressed low, the LED should stay ON,

Solution:
ORG 0000H
LJMP MAIN /bypass interrupt vector tabl
;--ISR for hardware interrupt INT1 to turn on the LED
ORG 0013H ; INT1 ISR
SETB P1.3 iturn on LED
MOV R3,#255 iload counter
BACK: DJINZ R3,BACK ;keep LED on for a while
CLR P1.3 iturn off the LED
RETI ;jreturn from ISR
;--MAIN program for initialization
ORG 30H
MAIN: MOV IE,#10000100B ;enable external INT1
HERE: SJMP HERE ;stay here until interrupted
END

Pressing the switch will turn the LED on. If it is kept activated, the LED stays on.

]k What is the use of IP register in 8051 microcontrollers? If interrupts for serial
communication, TO and T1 (Timer0 and Timer1), are activated at the same time
and if IP register contains 10H then how the service will be provided to the
interrupts.

Solution:

We can alter the sequence of interrupt priority by assigning a higher priority to any
one of the interrupts by programming a register called IP (interrupt priority). To give
a higher priority to any of the interrupts, we make the corresponding bit in the IP
register high.

Interrupt Priority Register (Bit-addressable)

D7 DO
— | - | P2 | Ps | PTL | PX1L | PTO | PXO

-- IP.7 Reserved

- IP.6 Reserved

PT2 IP.5 Timer 2 interrupt priority bit (8052 only)
PS IP.4 Serial port interrupt priority bit

PT1 IP.3 Timer 1 interrupt priority bit

PX1 IP.2 External interrupt 1 priority bit

PTO IP.1 Timer O interrupt priority bit

PX0 IP.0 External interrupt O priority bit

Priority bit=1 assigns high priority

Priority bit=0 assigns low priority
If interrupts for serial communication, TO and T1 (Timer0 and Timerl), are activated
at the same time and if IP register contains 10H.
i. e., IP=00010000B
Here timer 0 and timer 1 have low priority that is ‘0" in this case interrupts are
serviced according to the sequence listed in the below table. That is timer 0 is serviced
first and then timer 1 by 8051 microcontroller.

Interrupt Priority Upon Reset

Highest To Lowest Priority

External Interrupt 0 (INTO)
Timer Interrupt 0 (TFO)
External Interrupt 1 (INT1)
Timer Interrupt 1 (TF1)

Serial Communication (RI + TI)

