

USN

Internal Assessment Test 3 – May. 2022

Sub: Operating System
Sub

Code:
18 EC 641 Branch: ECE

Date: 09-07-22 Duration: 90 min’s Max Marks: 50
Sem /

Sec:
6 – A B C D OBE

Answer any FIVE FULL Questions

MARKS CO
RB

T

1. With a diagram interpret the interface between file system and IOCS. [10] CO3 L2

2. Interpret directory structure with relevant diagram and its fields. [10] CO3 L2

3. Relate the disk space allocation method with conventional method. [10] CO3 L3

4. Illustrate the file organization and access methods in detail [10] CO3 L3

5. With a neat diagram interpret message passing. [10] CO5 L3

6. Explain mail box with relevant diagram. [10] CO5 L2

7. Define deadlock and explain deadlock prevention mechanism. [10] CO5 L2

USN

Internal Assessment Test 3 – May. 2022

Sub: Operating System
Sub

Code:
18 EC 641 Branch: ECE

Date: 09-07-22 Duration: 90 min’s Max Marks: 50
Sem /

Sec:
6 – A B C D OBE

Answer any FIVE FULL Questions

MARKS CO
RB

T

1. With a diagram interpret the interface between file system and IOCS. [10] CO3 L2

2. Interpret directory structure with relevant diagram and its fields. [10] CO3 L2

3. Relate the disk space allocation method with conventional method. [10] CO3 L3

4. Illustrate the file organization and access methods in detail [10] CO3 L3

5. With a neat diagram interpret message passing. [10] CO5 L3

6. Explain mail box with relevant diagram. [10] CO5 L2

7. Define deadlock and explain deadlock prevention mechanism. [10] CO5 L2

Internal Assessment Test 3– July. 2022

Sub: Operating System Sub Code: 18 EC 641 Branch: ECE

Date: 09-07-22 Duration: 90 Minutes Max Marks: 50 Sem / Sec: 6/A,B,C,D OBE

Scheme and Solution

MARKS

CO

RBT

1 The file system uses the IOCS to perform I/O operations and the IOCS implements them rough

kernel calls. The interface between the file system and the IOCS consists of three data

structures the file map table (FMT), the file control block (FCB), and the open files table

(OFT) and functions that perform I/O operations. Use of these data structures avoids repeated

processing of file attributes by the file system, and provides a convenient method of tracking

the status of ongoing file processing activities. The file system allocates disk space to a file and

stores information about the allocated disk space in the file map table (FMT). The FMT is

typically held in memory during the processing of a file.

A file control block (FCB) contains all information concerning an ongoing file processing

activity. This information can be classified into the three categories shown in Table

6.2.Information in the file organization category is either simply extracted from the file

declaration statement in an application program, or inferred from it by the compiler, e.g.,

information such as the size of a record and number of buffers is extracted from a file

declaration, while the name of the access method is inferred from the type and organization of

a file. The compiler puts this information as parameters in the open call.

When the call is made during execution of the program, the file system puts this information in

the FCB. Directory information is copied into the FCB through joint actions of the file system

and the IOCS when a new file is created. Information concerning the current state of

processing is written into the FCB by the IOCS. This information is continually updated during

the processing of a file. The open files table (OFT) holds the FCBs of all open files. The OFT

resides in the kernel address space so that user processes cannot tamper with it. When a file is

opened, the file system stores its FCB in a new entry of the OFT. The offset of this entry in the

OFT is called the internal id of the file. The internal id is passed back to the process, which

uses it as a parameter in all future file system calls.

Fields in FCB

06

04

CO3 L2

2 A directory contains information about a group of files. Each entry in a directory contains the

attributes of one file, such as its type, organization, size, location, and the manner in which it
may be accessed by various users in the system. Figure shows the fields of a typical directory

entry. The open count and lock fields are used when several processes open a file

concurrently. The open count indicates the number of such processes. As long as this count is

non zero, the file system keeps some of the metadata concerning the file in memory to

speedup accesses to the data in the file. The lock field is used when a process desires

exclusive access to a file.

A user can create a file to hold data or to act as a directory. When a distinction between the

two is important, we will call these files respectively data files and directory files, or simply

06

CO3 L2

directories. In a directory tree, each file except the root directory has exactly one parent

directory. This provides total separation of different users files and complete file naming

freedom. However, it makes file sharing rather cumbersome

04

3 A disk may contain many file systems, each in its own partition of the disk. The file

system knows which partition a file belongs to, but the IOCS does not. Hence disk

space allocation is performed by the file system. Early file systems adapted the contiguous

memory allocation model by allocating a single contiguous disk area to a file when it was

created. This model was simple to implement. It also provided data access efficiency by

reducing disk head movement during sequential access to data in a file. However,

contiguous allocation of disk space led to external fragmentation. Interestingly, it also

suffered from internal fragmentation because the file system found it prudent to allocate

some extra disk space to allow for expansion of a file.

Linked Allocation

A file is represented by a linked list of disk blocks. Each disk block has two fields in it
data and metadata. The data field contains the data written into the file, while the

metadata field is the link field, which contains the address of the next disk block allocated

to the file. Figure6.10 illustrates linked allocation. The location info field of the directory

entry of file alpha points to the first disk

block of the file. Other blocks are accessed by following the pointers in the list of disk

blocks. The last disk block contains null information in its metadata field. Thus, file alpha

consists of disk blocks 3 and 2, while file beta consists of blocks 4, 5,and 7.

[04]

CO3 L3

Fig :linked allocation of disk space

File Allocation Table (FAT)

MS-DOS uses a variant of linked allocation that stores the metadata separately from the

file data. A file allocation table (FAT) of a disk is an array that has one element
corresponding to every disk block in the disk. For a disk block that is allocated to a file,

the corresponding FAT element contains the address of the next disk block. Thus the disk

block and its FAT element together form a pair that contains the same information as the

disk block in a classical linked allocation scheme.

Fig: File Allocation Table

Indexed Allocation

In indexed allocation, an index called the file map table (FMT) is maintained to note the

addresses of disk blocks allocated to a file. In its simplest form, an FMT can be an array

containing disk block addresses. Each disk block contains a single field the data field. The

field of a file‘s directory entry points location info to the FMT for the file

Figure:Indexed allocation of disk space.

[03]

[03]

4 A file organization is a combination of two features a method of arranging records in a file
and a procedure for accessing them. A file organization is designed to exploit the

characteristics of an I/O device for providing efficient record access for a specific record access

pattern. A file system supports several file organizations so that a process can employ the one

that best suits its file processing requirements and the I/O device in use. This section describes

three fundamental file organizations sequential file organization, direct file organization and

index sequential file organization. Other file organizations used in practice are either variants

of these fundamental ones or are special-purpose organizations that exploit less commonly

used I/O devices. Accesses to files governed by a specific file organization are implemented by

an IOCS module called an access method. An access method is a policy module of the IOCS.

In sequential file organization, records are stored in an ascending or descending sequence

according to the key field; the record access pattern of an application is expected to follow suit.
Hence sequential file organization supports two kinds of operations: read the next (or previous)

record, and skip the next (or previous) record. A sequential-access file is used in an application

if its data can be conveniently pre-sorted into an ascending or descending order. The sequential

[03]

CO3 L3

file organization is also used for byte stream files.

The direct file organization provides convenience and efficiency of file processing when

records are accessed in a random order. To access a record, a read/write command needs to

mention the value in its key field. We refer to such files as direct access files. A direct-access

file is implemented as follows: When a process provides the key value of a record to be

accessed, the access method module for the direct file organization applies a transformation

to the key value that generates the address of the record in the storage medium. If the file is

Organized on a disk, the transformation generates a (track no, record no) address. The disk

heads are now positioned on the track track no before a read or write command is issued on the

record record no.

The index sequential file organization is a hybrid organization that combines elements of the

indexed and the sequential file organizations. To locate a desired record, the access method
module for this organization searches an index to identify a section of the disk that may contain

the record, and searches the records in this section of the disk sequentially to find the record.

The search succeeds if the record is present in the file; otherwise, it results in a failure. This

arrangement requires a much smaller index than does a pure indexed file because the index

contains entries for only some of the key values. It also provides better access efficiency than

the sequential file organization while ensuring comparably efficient use of I/O media.

[03]

[04]

5 Message passing suits diverse situations where exchange of information

between processes plays a key role. One of its prominent uses is in the client

server paradigm, wherein a server process offers a service, and other processes,

called its clients, send messages to it to use its service. This paradigm is used

widely a microkernel- based OS structures functionalities suchas scheduling in

the form of servers, a conventional OS offer services such as printing through

servers, and, on the Internet, a variety of services are offered by Web servers.

Another prominent use of message passing is in higher-level protocols for

exchange of electronic mails and communication between tasks in parallel or

distributed programs. Here, message passing is used to exchange information,

while other parts of the protocol are employed to ensure reliability.

The key issues in message passing are how the processes that send and receive

messages identify each other, and how the kernel performs various actions

related to delivery of messages how it stores and delivers messages and

whether it blocks a process that sends a message until its message is delivered.

These features are operating system specific. We describe different message

passing arrangements employed in operating systems and discuss their

significance for user processes and for the kernel. We also describe message

passing in UNIX and in Windows operating systems.

The four ways in which processes interact with one another data sharing,

message passing, synchronization, and signals. Data sharing provides means to

access values of shared data ina mutually exclusive manner. Process

synchronization is performed by blocking a process

until other processes have performed certain specific actions. Capabilities of

message passing overlap those of data sharing and synchronization; however,

each form of process interaction has its own niche application area..Figure 8.1

shows an example of message passing. Process Pi sends a message to process

Pj by executing the statement send (Pj, <message>). The compiled code of the

send statement invokes the library module send. Send makes a system call

send, with Pj and the message as parameters. Execution of the statement

receives (Pi, msg_area), where msg_area is an area in Pj space, results in a

system call receive.

Figure:Message passing.

[10] CO5 L3

The semantics of message passing are as follows: At a send call by Pi , the

kernel checks whether process Pj is blocked on a receive call for receiving a

message from process Pi . If so, it copies the message into msg_area and

activates Pj. If process Pj has not already made a receive call, the kernel

arranges to deliver the message to it when Pj eventually makes a receive call.

When process Pj receives the message, it interprets the message and takes an

appropriate action. Messages may be passed between processes that exist in the

same computer or in different computers connected to a network. Also, the

processes participating in message passing may decide on what a specific

message means and what actions the receiver process should perform on

receiving it. Because of this flexibility, message passing is used in the

following applications:

Message passing is employed in the client server paradigm, which is used to

communicate between components of a microkernel-based operating system

and user processes, to provide services such as the print service to processes

within an OS, or to provide Web-based services to client processes located in

other computers. Message passing is used as the backbone of higher-level

protocols employed for communicating between computers or for providing

the electronic mail facility. Message passing is used to implement

communication between tasks in a parallel or distributed program.

In principle, message passing can be performed by using shared variables. For

example, msg_area in Figure.

Two important issues in message passing are:

Naming of processes: Whether names of sender and receiver processes are

explicitly indicated in send and receive statements, or whether their identities

are deduced by the kernel in some other manner.

Delivery of messages: Whether a sender process is blocked until the message

sent by it is delivered, what the order is in which messages are delivered to the

receiver process, and how exceptional conditions are handled.

6 A mailbox is a repository for inter process messages. It has a unique name.

The owner of a mailbox is typically the process that created it. Only the

owner process can receive messages from a mailbox. Any process that

knows the name of a mailbox can send messages to it. Thus, sender and

receiver processes use the name of a mailbox, rather than each other‘s

names, in send and receive statements; it is an instance of indirect naming.

Figure 8.6llustrates message passing using a mailbox named sample. Process

Pi creates the mailbox, using the statement create_mailbox. Process Pj sends

a message to the mailbox, using the mailbox name in its send statement. If Pi

has not already executed a receive statement, the kernel would store the

message in a buffer. The kernel may associate a fixed set of buffers with

each mailbox, or it may allocate buffers from a common pool of buffers

when a message is sent. Both create_mailbox and send statements return

with condition codes.The kernel may provide a fixed set of mailbox names,

or it may permit user processes to assign mailbox names of their choice. In

the former case, confidentiality of communication between a pair of

processes cannot be guaranteed because any process can use a mailbox.

Confidentiality greatly improves when processes can assign mailbox names

of their own choice. To exercise control over creation and destruction of

mailboxes, the kernel may require a process for explicitly connect to a

mailbox before using it and to disconnect when it finishes using it.

[07]

[03]

CO5 L2

Figure : Creation and use of mailbox sample.

Use of a mailbox has following advantages:

Anonymity of receiver: A process sending a message to request a service may

have no interest in the identity of the receiver process, as long as the receiver

process can perform the needed function. A mailbox relieves the sender

process of the need to know the identity of the receiver. Additionally, if the

OS permits the ownership of a mailbox to be changed dynamically, one

process can readily take over the service of another.

Classification of messages: A process may create several mailboxes, and use

each mailbox to receive messages of a specific kind. This arrangement

permits easy classification of messages.

7 A deadlock is a situation concerning a set of processes in which each process in

the set waits for an event that must be caused by another process in the set.

Deadlock Prevention

For a deadlock to occur each of the four necessary conditions must hold. If at

least one of the

there condition does not hold then we can prevent occurrence of deadlock.

• Non – Shareable Resource : This holds for non-sharable resources. Eg:-A

printer can be used by only one process at a time. Mutual exclusion is not

possible in sharable resources and thus they cannot be involved in deadlock.

Read-only files are good examples for sharable resources. A process never

waits for accessing a sharable resource. So we cannot prevent deadlock by

denying the mutual exclusion condition in non-sharable resources

• Hold and Wait: This condition can be eliminated by forcing a process to

release all its resources held by it when it request a resource i.e., not available.x

One protocol can be used is that each process is allocated with all of its

resources before its start execution. Eg:-consider a process that copies the data

from a tape drive to the disk, sorts the file and then prints the results to a

printer. If all the resources are allocated at the beginning then the tape drive,

disk files and printer are assigned to the process. The main problem with this is

it leads to low resource utilization because

it requires printer at the last and is allocated with it from the beginning so that

no other process can use it. x Another protocol that can be used is to allow a

process to request a resource when the process has none. i.e., the process is

allocated with tape drive and disk file. It performs the required operation and

releases both. Then the process once again request for disk file and the printer

and the problem and with this is starvation is possible.

• No Preemption:To ensure that this condition never occurs the resources must

be preempted. The following protocol can be used. x If a process is holding

some resource and request another resource that cannot be immediately

[02]+[08] CO5 L2

allocated to it, then all the resources currently held by the requesting process

are preempted and added to the list of resources for which other processes may

be waiting. The process will be restarted only when it regains the old resources

and the new resources that it is requesting. x When a process request resources,

we check whether they are available or not. If they are available we allocate

them else we check that whether they are allocated to some other waiting

process. If so we preempt the resources from the waiting process and allocate

them to the requesting process. The requesting process must wait.

• Circular Wait:-The fourth and the final condition for deadlock is the circular

wait condition. One way to ensure that this condition never, is to impose

ordering on all resource types and each process requests resource in an

increasing order. Let R={R1,R2,.........Rn} be the set of resource types. We

assign each resource type with a unique integer value. This will allows us to

compare two resources and determine whether one precedes the other in

ordering. Eg:-we can define a one to one function -F(disk drive)=5

F(printer)=12 F(tape drive)=1

Deadlock can be prevented by using the following protocol:x Each process can

request the resource in increasing order. A process can request any number of

instances of resource type say Ri and it can request instances of resource type

Rj only F(Rj) > F(Ri). x Alternatively when a process requests an instance of

resource type Rj, it has released any resource Ri such that F(Ri) >= F(Rj). If

these two protocol are used then the circular wait can’t hold.

