

Department of Information Science and Engineering

18CS734 – Web Technology and its Applcation July / August 2022

VTU Question Paper – Scheme and Solution

Module 1

1. (a) What is HTML? Explain the structure of HTML document with an

example.

Solution : HTML is a markup language

Structure of HTML Documents
A simple html program

<!DOCTYPE html>

<html>

<head>

<title> A simple Program

</title>

</head>

<body>

<p> A simple program to show the working of html documents</p>

</body>

</html>

<!DOCTYPE html> ----- Defines the type of document
<html> ------Root element – indicates that webpage is written in html
<head> ---- Contains title & information about this web page

<body> ------- Contents to be displayed on webpage
 </html> -------- Closing of html document

<!DOCTYPE html>

<!-- headings.html An example to illustrate headings-->

<head> <title> Headings </title>

</head>

<body>

<h1> Aidan's Airplanes (h1) </h1>

<h2> The best in used airplanes (h2) </h2>

<h3> "We've got them by the hangarful" (h3) </h3>

<h4> We're the guys to see for a good used airplane (h4) </h4>

<h5> We offer great prices on great planes (h5) </h5>

<h6> No returns, no guarantees, no refunds, all sales are final! (h6) </h6>

</body>

</html>

(b) What are contextual selectors? Identify and explain four different

contextual selectors.

Contextual Selectors

A contextual selector (in CSS3 also called combinators) allows to select elements based on their

ancestors, descendants, or siblings. It selects elements based on their context or relation to other

elements in the document tree.

As shown in below table, descendant selector matches all elements that are contained within
another element. The character used to indicate descendant selection is the space character.

(c) Write the syntax of below mentioned HTML elements and briefly

explain with examples.

 (a) <a> (b)

Solution :

(a) <a> :

Links are an essential feature of all web pages. Links are created using the <a> element (the

“a” stands for anchor).

<a> is an inline tag. A link has two main parts: the destination and the label. The label of

a link can be text or another HTML element such as an image.

 click here

• A link specifies the address of the destination. Such an address might be a file name,

a directory path and a file name, or a complete URL.

• The document whose address is specified in a link is called the target of that link.

• The value assigned to href (hypertext reference) specifies the target of the link. If the

target is in another document in the same directory, the target is just the document’s file

name.

 :

The tag is the oldest method for displaying an image.

src attribute - specifies the file containing the image;

alt - specifies text to be displayed when it is not possible to display the image.

title – specifies the title to be displayed in pop-up tool tip when user moves mouse over image.

width and height - can be included to specify (in pixels) the size of the rectangle for the image

Eg:

<html>

<head>

<head> <title>Image display</title>

</head>

<body>

<p >Displays the image</p>

<p >qqqqqqqq,</p>

</body>

</html>

2. (a) Illustrate the CSS box model. Be sure to label and briefly explain each

component of the box.

Solution:

The Box Model

In CSS, all HTML elements exist within a rectangular element box shown in Figure.

The background color or image of an element fills an element within its border.

Some of the common background properties are –

1. Property Description

background- Specifies whether the background image scrolls with the document

(default) or remains fixed. values are: fixed, scroll

background A combined shorthand property that allows you to set
multiple background property.

background-image Specifies the background image

1. Borders

Borders are used to visually separate elements. Borders are put around all

four sides of an element, or just one, two, or three of the sides. Various border

properties are –

Property Description

border A shorthand property that allows to set the style, width, and color

of a border in one property. The order is important and must be:

border-style border-width border-color

border-style Specifies the line type of the border. Possible values are: solid,
dotted, dashed, double, groove, ridge, inset, and outset.

border-width The width of the border in a unit(usually in px). A variety of

keywords (thin, medium, thick etc.) are also supported.

border-color The color of the border in a color unit.

border-radius The radius of a rounded corner.

border-image The URL of an image to use as a border

(b) List the HTML5 Semantic elements and explain any three

with suitable elements.
• The new semantic elements in HTML5 are listed below -

1. Headers and Footer
2. Heading Groups
3. Navigation
4. Articles and Sections
5. Figure and Figure Captions
6. Aside

Header and Footer

Most website pages have a recognizable header and footer section. Typically the

header contains the site logo and title (and perhaps additional subtitles or

taglines), horizontal navigation links, and perhaps one or two horizontal banners.

The typical footer contains less important material, such as smaller text versions

of the navigation, copyright notices, information about the site’s privacy policy,

background-color Sets the background color of the
element.

and perhaps twitter feeds or links to other social sites.

Both the HTML5 <header> and <footer> element can be used not only for page

headers and footers, but also for header and footer elements within other

HTML5 containers, such as
<article> or <section>.

Heading Groups

A header may contain multiple headings <hgroup> element is usually used in such

cases. The

<hgroup> element can be used in contexts other than a header. For instance,

one could also use an <hgroup> within an <article> or a <section> element.

The <hgroup> element can only contain
<h1>, <h2>, etc., elements.

Navigation

The <nav> element represents a section of a page that contains links to other

pages or to other parts within the same page. Like the other new HTML5

semantic elements, the browser does not apply any special presentation to the

<nav> element. The <nav> element was intended to be used for major navigation

blocks. However, like all the new HTML5 semantic elements, from the

browser’s perspective, there is no definite right or wrong way to use the <nav>

element. Its sole purpose is to make the document easier to understand.

(c) Describe the embedded style sheet with example.
Embedded style sheets (also called internal styles or document level

styles) are style rules placed within the <style> element (inside the

<head> element of an HTML document) and apply to the whole body of

the document.

The disadvantage of using embedded styles is that it is difficult to

consistently style multiple documents when using embedded styles. But it

is helpful when quickly testing out a style that is used in multiple places

within a single HTML document. Spaces are ignored in <style> element.

<head>

<title>Student Data</title>

<style>

h1 { font-size: 24pt;

h2

{

font-size: 18pt;

}

</style>

</head>

<body>

<h1>Student count</h1>

<h2>CSE/ISE Department</h2>

</body></html>

Module 2

3. (a) Write the HTML code for table operation

<html>

<body>

<table border="border">

<tr>

<th colspan="8"> Year 2021 </th>

</tr>

<tr>

<th rowspan="2">Month</th>

<th colspan="2"> Days</th>

<th rowspan="2" colspan="6"> Dates </th>

</tr>

<tr>

<th> Name</th>

<th>Id</th>

</tr>

<tr>

<th rowspan="7"> March</th>

<th> Mon </th>

<th> 1 </th>

<th> 1 </th>

<th> 8 </th>

<th> 15 </th>

<th> 22</th>

<th> 29</th>

</tr>

<tr>

<th> Tue </th>

<th> 2 </th>

<th> 2 </th>

<th> 9 </th>

<th> 16 </th>

<th> 23</th>

<th> 30</th>

</tr>

<tr>

<th> wed </th>

<th> 3 </th>

<th> 3 </th>

<th> 10 </th>

<th> 17 </th>

<th> 24</th>

<th> 31</th>

</tr>

<tr>

<th> Thur </th>

<th> 4 </th>

<th> 4 </th>

<th> 11 </th>

<th> 18 </th>

<th> 25</th>

<th> </th>

</tr>

<tr>

<th> fri </th>

<th> 5 </th>

<th> 5 </th>

<th> 12 </th>

<th> 19 </th>

<th> 26</th>

<th> </th>

</tr>

<tr>

<th> sat </th>

<th> 6 </th>

<th> 6 </th>

<th> 13 </th>

<th> 20 </th>

<th> 27</th>

<th> </th>

</tr>

<tr>

<th> sun </th>

<th> 7 </th>

<th> 7 </th>

<th> 14 </th>

<th> 21 </th>

<th> 28</th>

<th> </th>

</tr>

</body>

</html>

(b) What is responsive design? Explain in brief the four key

components that make a responsive design work.

Solution :

In a responsive design, the page “responds” to changes in the browser size that

go beyond the width scaling of a liquid layout.

One of the problems of a liquid layout is that images and horizontal navigation

elements tend to take up a fixed size, and when the browser window shrinks to

the size of a mobile browser, liquid layouts can become unusable. In a responsive

layout, images will be scaled down and navigation elements will be replaced as

the browser shrinks, as shown in the figure below.

There are four key components that make responsive design work. They are:

1. Liquid layouts
2. Scaling images to the viewport size
3. Setting viewports via the <meta> tag
4. Customizing the CSS for different viewports using media queries

Responsive designs begin with a liquid layout, in which most elements have

their widths specified as percentages. Making images scale in size is done as

follows:

img {

max-width: 100%;

}

But this does not change the downloaded size of the image; it only shrinks or

expands its visual display to fit the size of the browser window, never

expanding beyond its actual dimensions.

Setting Viewports

A key technique in creating responsive layouts is the ability of current mobile

browsers to shrink or grow the web page to fit the width of the screen. The mobile

browser renders the page on a canvas called the viewport. On iPhones, for

instance, the viewport width is 980 px, and then that viewport is scaled to fit the

current width of the device. The mobile Safari browser introduced the viewport

<meta> tag as a way for developers to control the size of that initial viewport.

<html>

<head>

<meta name="viewport" content="width=device-width" />

By setting the viewport as above, the page is telling the browser that no scaling

is needed, and to make the viewport as many pixels wide as the device screen

width. This means that if the device has a screen that is 320 px wide, the viewport

width will be 320 px; if the screen is 480 px, then the viewport width will be 480

px.

Media Queries

The other key component of responsive designs is CSS media queries. A media

query is a way to apply style rules based on the medium that is displaying the

file. Use these queries to look at the capabilities of the device, and then define

CSS rules to target that device.

Example of media query

@media only screen and (max-width: 480px) {……}

4. (a) Illustrate the construction of multi column layouts with

example

Solution :

Constructing Multicolumn Layouts
The previous sections showed two different ways to move items out of the normal

top-down flow, by using positioning (relative, absolute or fixed) and by using

floats. They are the techniques that can be used to create more complex layouts.

The below topics are about the creation of layout using float and positioning

property of CSS.

Using Floats to Create Columns
Using floats is the most common way to create columns of content. The steps

for this approach are as follows –

1. float the content container that will be on the left-hand side. (the
floated container needs to have a width specified).

2. The other content will flow around the floated element.
Set the left – hand side margin for the non-floated element

Using Positioning to Create Columns

Positioning can also be used to create a multicolumn layout. Typically, the

approach is to absolute position the elements.
This approach uses some type of container, in which the elements are positioned.

The following steps are followed –

1. Position the container element (into which all other elements are
positioned) with respect to the browser window.

2. Position the other elements with respect to the container element, created in step

(b) Explain the different types of buttons define in HTML

Button Controls

HTML defines several different types of buttons.

Type Description

<input type="submit"> Creates a button that submits the form data to the server

<input type="reset"> Creates a button that clears the user’s already entered form data.

<input type="button"> Creates a custom button. This button may requires a script for it to

actually perform any action

<input type="image"> Creates a custom submit button that uses an image for its display

<button> Creates a custom button. The <button> element differs from

<input type="button"> in that you can completely customize what

appears in the button. It can be used to include both images and text.

(c) How the block level and inline elements are displayed in

the normal flow

Solution :

Block-level elements such as <p>, <div>, <h2>, , and <table> are elements

that are contained on their own line, because block-level elements begin with a

line break (new line). Two block-level elements can’t exist on the same line,

without styling.

Some of the properties of block-level elements -

• Each block exists on its own line.
• It is displayed in normal flow from the browser window’s top to its bottom.
• By default each block level element fills up the entire width

of its parent (browser window).

• CSS box model properties can be used to customize, for instance,
the width of the box and the margin space between other block
level elements

Inline elements do not

form their own blocks but

instead are displayed within

lines. Normal text in an

HTML document is inline,

and also elements such as

, <a>, , and

 are inline. Inline

elements line up next to one

another horizontally from

left to right on the same

line, when there is no

enough space left on the

line, the content moves to

a

new line.

Some of the properties of inline elements are –

• Inline element is displayed
in normal flow from its
container’s left to right.

• When a line is filled with
content, the next line will
receive the remaining
content, and so on.

• If the browser window
resizes, then inline content
will be “re-flowed” based on
the new width.

5. (a) write Javascript code that uses function for the following

problems:

a. For the string input the output should be to display the

position of left most vowel.

b. For the numeric input output should be to display the

reverse of a number

<html>

<body>

<script type="text/javascript">

function Reverse(str)

{

var num,rev=0,remainder;

num = parseInt(str);

while(num!=0)

{

remainder = num%10;

num = parseInt(num/10);

rev = rev * 10 + remainder;

}

alert("Reverse of "+str+" is "+rev);

}

function Vowel(str)

{

var str = str.toUpperCase();

for(var i = 0; i<str.length; i++)

{

var chr = str.charAt(i);

if(chr == 'A' || chr == 'E' || chr == 'I' || chr == 'O' || chr

== 'U')

break;

}

if(i<str.length)

alert("The position of the left most vowel is "+(i+1));

else

alert("No vowel found in the entered string");

}

var str = prompt("Enter the Input","");

if((isNaN(str)))

{

 Vowel(str);

}

else

{

Reverse(str);

}

</script>

</body>

</html>

(b)Explain the two approaches to embed php script in HTML

with suitable and compare two approaches.

(c) What is DOM? Briefly explain the different types of nodes.

JavaScript is used to interact with the HTML document elements in which it is contained.

The elements and attributes of HTML can be programmatically accessed, through an API

called the Document Object Model (DOM).

DOM is an API using which the javascript can dynamically access and modify html

elements, its attributes and styles associated with it. Javascript can access, modify, add or

delete the html elements.

Nodes

The html document with elements is considered as a tree structure called the DOM tree. Here

each element of HTML document is called a node. Each node is an individual branch, with

text nodes, and attribute nodes. Most of the tasks that we typically perform in JavaScript

involve finding a node, and then accessing or modifying it via those properties and methods.

The DOM tree

Example of node and its attribute and text nodes:

Properties of a node object

Property Description
attributes Collection of node attributes

childNodes A NodeList of child nodes for this node

firstChild First child node of this node

lastChild Last child of this node
nextSibling Next sibling node for this node

nodeName Name of the node

nodeType Type of the node
nodeValue Value of the node

parentNode Parent node for this node

previousSibling Previous sibling node for this node.

6. Explain the php module in Apache and describe the

differences between multi threaded and multi process setup.

Apache and PHP

As shown in the above figure, PHP is usually installed as an Apache module. The PHP

module mod_php5 is sometimes referred to as the SAPI (Server Application

Programming Interface) layer since it handles the interaction between the PHP

environment and the web server environment.

Apache runs in two possible modes: multi-process (also called preforked) or multi-

threaded (also called worker).

The default installation of Apache runs using the multi-process mode. That is, each request

is handled by a separate process of Apache; the term fork refers to the operating system

creating a copy of an already running process. Since forking is time intensive, Apache will

prefork a set number of additional processes in advance of their being needed. A key

advantage of multi- processing mode is that each process is insulated from other processes,

that is, problems in one process can’t affect other processes

In the multi-threaded mode, a smaller number of Apache processes are forked. Each of the

processes runs multiple threads. A thread is like a lightweight process that is contained

within an operating system process. A thread uses less memory than a process, and typically

threads share memory and code; as a consequence, the multi-threaded mode typically scales

better to large loads.

(b) Discuss the different ways the javascript can be included in

HTML page and which is the most preferred way and why?

JavaScript can be linked to an HTML page in different ways.

1) Inline JavaScript
Inline JavaScript refers to the practice of including JavaScript code directly within certain

HTML attributes. Use of inline javascript is general a bad practice and should be avoided.

Eg:

<input type="button” onclick="alert('Are you sure?');" />

2) Embedded JavaScript
Embedded JavaScript refers to the practice of placing JavaScript code within a <script>

element Use of embedded JavaScript is done for quick testing and for learning scenarios, but

is not accepted in real world web pages. Like with inline JavaScript, embedded scripts can

be difficult to maintain.

Eg:

<script type="text/javascript">

/* A JavaScript

Comment */ alert

("Hello World!");
</script>

3) External JavaScript
Since writing code is a different than designing HTML and CSS, it is often advantageous to

separate the two into different files. An external JavaScript file is linked to the html file as

shown below.

<head>

<script type="text/JavaScript" src="greeting.js">

</script>

</head>

The link to the external JavaScript file is placed within the <head> element, just as was the

case with links to external CSS files. It can also be placed anywhere within the <body>

element. It is recommended to be placed either in the <head> element or the very bottom of

the <body> element.

JavaScript external files have the extension .js. The file “greeting.js” is linked to the required

html file. Here the linked is placed in the <head> tag. These external files typically contain

function definitions, data definitions, and other blocks of JavaScript code. Any number of

webpages can use the same external file.

(c)List the web server’s responsibilities.
• Server is responsible for answering all client requests. Even a simplest website must

have a web server, to answer requests.

• Once a web server is configured and the IP address associated through a DNS server,
it can then start listening for and answering HTTP requests.

• In the very simplest case the server is hosting static HTML files, and in response to a
request sends the content of the file back to the requester.

• A web server has many responsibilities beyond responding to requests for HTML files.
These include handling HTTP connections, responding to requests for static and
dynamic resources, managing permissions and access for certain resources,
encrypting and compressing data, managing multiple domains and URLs, managing
database connections, cookies, and state, and uploading and managing files.

7. (a) What are super globals? List the different super globals

and briefly any two.

Solution:

Superglobal Arrays

PHP uses special predefined associative arrays called superglobal variables. It allows

the programmer to easily access HTTP headers, query string parameters, and other

commonly needed information. They are called superglobal because these arrays

are always accessible, from a function , class or file, without using the global keyword.

Some of the superglobal variables are –

NAME DESCRIPTION

$GLOBALS Array for storing user data that needs superglobal scope

$_COOKIES Array of cookie data passed to page via HTTP request

$_ENV Array of server environment data

$_FILES Array of file items uploaded to the server

$_GET Array of query string data passed to the server via the URL

$_POST Array of query string data passed to the server via the HTTP header

$_REQUEST Array containing the contents of $_GET, $_POST, and $_COOKIES

$_SESSION Array that contains session data

$_GET and $_POST Superglobal Arrays
The $_GET and $_POST arrays allows the programmer to access data sent by the client

in a query string. They are the most important superglobal variables in PHP.

An HTML form allows a client to send data to the server. That data is formatted such

that each value is associated with a name of control defined in the form. If the form

was submitted using an HTTP GET request ie. <form method=”get” action=”server file

path” >, then the resulting URL will contain the data in the query string.

Eg-

https://name-processing.php?firstname=amith&lastname=kumar%20singh

retrieve the values sent through the URL using $_GET[“firstname”] and $_GET[“lastname”]

https://name-processing.php/?firstname=amith&lastname=kumar%20singh

PHP will populate the superglobal $_GET array using the contents of this query string
in the URL.

If the form was sent using HTTP POST, then the values will be sent through

HTTP POST request body. The values and keys are stored in the $_POST array.

Thus the values passed by the user can easily be accessed at the server side using the
global arrays $_GET[] and $_POST[] for ‘get’ and ‘post’ methods respectively.

(b) Explain the support of object oriented design in PHP.

Object-Oriented Design
The object-oriented design of software offers many benefits in terms of modularity,

testability, and reusability.

Objects can be reused across the program. The software is easier to maintain, as

any changes in the structure need to change only the class. OO concepts enables

faster development and easier maintenance of the software.

Data Encapsulation
Object-oriented design enables the possibility of encapsulation (hiding), that is,

restricting access to an object’s internal components (properties and methods). Another

way of understanding encapsulation is: it is the hiding of an object’s implementation

details.

In properly encapsulated class, the properties and methods, are hidden using the private

access specifier and these properties and methods are accessed to outside the class

using the public methods. Thus we can restrict the usage of required properties and

methods.

The hidden properties are accessed and modified using public methods commonly

called getters and setters (or accessors and mutators). A getter returns a variable’s

value does not modify the property. It is normally called without parameters, and

returns the property from within the class. Eg -

public function

getFirstNa

me() {

return

$this-

>firstName

;
}

Setter methods modify properties, and allow extra logic to be added to prevent

properties from being set to strange values.

Eg –

public function setFirstName($name) {

$this->firstName = $name;

}

The below example shows the modified Student class with getters and setters. Some of
the properties are private. These properties cannot be accessed or assigned from outside the

class,

the getters and setters.

<?php

Class Student

{
private $name;

private $USN;

public $address;

public $avg;

function construct($n,$usn,$add,$avg)

{

$this->name = $n;

$this->USN= $usn;

$this->address = $add;

$this->avg = $avg;

}

public function getname() { return

$this->name; } public function

getUSN() { return $this->USN; }

public function setname($fullname) { $this-

>name=$fullname; } public function setUSN($usn) {

$this->USN=$usn; }

}

$s1 = new Student("Sajeev", "1VA15CS013","Bangalore",66);

$s1->setname(“Adithya”);

$s1->avg = 77; //setting avg directly , where as name is set using the function

$name = $s1->getname();

$usn= $s1->getUSN();

echo “name is $name
 USN is $usn
”;

echo “address is $s1->address
 average is $s1->avg”;

?>

Note: ‘$s1->address’ and ‘$s1->avg’ – can be accessed directly, without using any get

function.

(c) Write a php code that checks for valid mime type and file

extension

Limiting the Type of File Upload and extension

To check the type of file, check the file extension and the type of file using type key
of $_FILES array.

$validExt = array("jpg", "png");

$validMime =

array("image/jpeg","image/png");
foreach($_FILES as $fileKey =>

$fileArray)

{
$extension = end(explode(".", $fileArray["name"]));

if (in_array($fileArray["type"],$validMime) && in_array($extension, $validExt))

{

echo "all is well. Extension and mime types valid";
}

else

{ echo $fileKey." Has an invalid mime type or extension";

}

}

8. (a) Write a PHP program to create a class called “Artist” with

suitable constructor. All its data members are accessible

inside the class

Date members : First name, last name, birth city, birth date

Data functions “ getters and setters

Using above class instantiate two objects and displays the

artist details

(b) Explain the two techniques provided in php reading /

writing files and also list comparative advantages and

disadvantages

Reading/Writing Files
There are two basic techniques for read/writing files in PHP:

• Stream access In this technique, just a small portion of the file is read at a
time. It is the most memory-efficient approach when reading very large files.

• All-In-Memory access In this technique, the entire file is read into memory
(i.e., into a PHP variable). While not appropriate for large files, it does make
processing of the file extremely easy.

Stream Access

The functions used in this technique are similar to that of C programming.

The function fopen() takes a file location or URL and access mode as parameters.
The returned value is a stream resource (file handle).

Some of the common modes are “r” for read, “w” for write, and “c” creates a

new file for writing, “rw” for read and write.

The other functions are

– fclose(file handle)-

closing the file

fgets(file handle)- To read a single line, returns 0 if no

more data fread(file handle, no.of bytes) - To read an

specified amount of data fwrite(file handle, string)- To

write the string to a file

fgetc(file handle) – To read a

single character feof(file handle) –

checks for EOF

A program to read from a file and display it -

<?php

$f =

fopen("sample.txt

", "r"); while

($line = fgets($f))
{

echo $line . "
";

}

fclose($f);

?>
In-Memory File Access

While the previous approach to reading/writing files requires more care in dealing with

the streams, file handles etc. The alternative simpler approach is to read/write the entire

contents into the memory with the help of variable.

The alternative functions to process the file are –

The file_get_contents() and file_put_contents() functions allow you to read or write

an entire file in one function call. To read an entire file into a variable you can simply

use:

$fileAsString = file_get_contents(FILENAME);

To write the contents of a string $writeme

to a file, use
file_put_contents(FILENAME, $writeme);

(c) What is a visibility of class member? Briefly explain

the different levels of visibility.

Visibility
The visibility of a property or method determines the accessibility of a class member

(i.e., a property or method) and can be set to public, private, or protected.

The public keyword means that the property or method is accessible to any code

anywhere that has a reference to the object.

The private keyword sets a method or variable to only be accessible from within the

class. This means that we cannot access or modify the property from outside of the

class, even if it is referenced with an object.

The protected keyword sets a method or variable to be accessible from within the class

and from its derived classes.

In UML, the "+" symbol is used to denote public properties and methods, the "–"
symbol for private members, and the "#" symbol for protected members.

9. (a) What is session state? How does session state works with

suitable example.

Session state is a server-based state mechanism that allows web applications

to store and retrieve objects of any type for each unique user session. That is,

each browser session has its own session state stored as a serialized file on the

server, which is deserialized and loaded into memory as needed for each

request.

As server storage is a finite resource, objects loaded into memory are released

when the request completes, making room for other requests and their session

objects. This means there can be more active sessions on disk than in memory

at any one time. Session state is ideal for storing more complex objects or data

structures that are associated with a user session.

How Does Session State Work?

The session state works within the same HTTP context as any web request. Sessions

in PHP are identified with a unique session ID. In PHP, this is a unique 32-byte string

that is by default transmitted back and forth between the user and the server via a

session cookie.

After generating or obtaining of a session ID for a new session, PHP assigns an

initially empty dictionary-style collection that can be used to hold any state values

for this session. When the request processing is finished, the session state is saved to

some type of state storage mechanism, called a session state provider. Finally, when

a new request is received for an already existing session, the session’s dictionary

collection is filled with the previously saved session data from the session state

provider.

(b) Demonstrate the manipulation of attributes, properties

and styles of the element using jQuery with suitable

examples.

jQuery Attributes

Any set of elements from a web page can be selected. In order to fully manipulate

the elements, one must understand an element’s attributes and properties.

HTML Attributes

The core set of attributes related to DOM elements are the ones specified in the HTML tags.

In jQuery we can both set and get an attribute value by using the attr() method on
any element from a selector. This function takes a parameter to specify which

attribute, and the optional

second parameter is the value to set it to. If no second parameter is passed, then the

return value of the call is the current value of the attribute. Some example usages are:
// var link is assigned the href attribute of the first <a> tag

var link = $("a").attr("href");

// change all links in the page to http://funwebdev.com

$("a").attr("href","http://funwebdev.com");

// change the class for all images on the page to fancy

$("img").attr("class","fancy");

HTML Properties

Many HTML tags include properties as well as attributes, the most common being the

checked property of a radio button or checkbox. In early versions of jQuery, HTML

properties could be set using the attr() method. However, since properties are not

technically attributes, this resulted in odd behavior. The prop() method is now the

preferred way to retrieve and set the value of a property although, attr() may return

some (less useful) values.
To illustrate this subtle difference, consider a DOM element defined by

<input class ="meh" type="checkbox" checked="checked">

The value of the attr() and prop() functions on that element differ as shown below.

var theBox = $(".meh");

theBox.prop("checked") //

evaluates to TRUE

theBox.attr("checked") //

evaluates to "checked"

http://funwebdev.com/
http://funwebdev.com/

Changing CSS

Changing a CSS style is syntactically very similar to changing attributes. jQuery

provides the extremely intuitive css() methods. There are two versions of this method

(with two different method signatures), one to get the value and another to set it. The

first version takes a single parameter containing the CSS attribute whose value you

want and returns the current value.

$color = $("#colourBox").css("background-color"); // get the color

To modify a CSS attribute you use the second version of css(), which takes two

parameters: the first being the CSS attribute, and the second the value.

// set color to red

$("#colourBox").css("background-color", "#FF0000");

If you want to use classes instead of overriding particular CSS attributes individually,

have a look at the additional shortcut methods described in the jQuery documentation.

Shortcut Methods

jQuery allows the programmer to rely on foundational HTML attributes and properties

exclusively as described above. However, as with selectors, there are additional

functions that provide easier access to common operations such as changing an

object’s class or the text within an HTML tag.

The html() method is used to get the HTML contents of an element (the part between the <>

and

</> tags associated with the innerHTML property in JavaScript).

(c) What is JASON? Explain with the code example, how to

convert string to Jason and vice versa.

JSON is a data serialization format, like XML. That is, it is used to represent object

data in a text format so that it can be transmitted from one computer to another. Many

REST web services encode their returned data in the JSON data format instead of

XML. While JSON stands for JavaScript Object Notation, its use is not limited to

JavaScript. It was originally designed to provide a lightweight serialization format to

represent objects in JavaScript. While it doesn’t have the validation and readability

of XML, it has the advantage of generally requiring significantly fewer bytes to

represent data than XML.

1. Using JSON in PHP

PHP comes with a JSON extension . Converting a JSON string into a PHP

object is quite straightforward:

<?php

// convert JSON string into PHP object

$text = '{"artist": {"name":"Manet","nationality":"France"}}';

$anObject =

json_decode($text);
echo $anObject->artist-

>nationality;

// convert JSON string into PHP associative array

$anArray =

json_decode($text, true);

echo

$anArray['artist']['nation

ality'];
?>

The json_decode() function can return either a PHP object or an associative array.

Since JSON data is often coming from an external source, we should check for parse

errors before using it, which can be done via the json_last_error() function:

<?php

// convert JSON string into PHP object

$text = '{"artist": {"name":"Manet","nationality":"France"}}';

$anObject = json_decode($text);

// check for parse errors

if (json_last_error() ==

JSON_ERROR_NONE) { echo

$anObject->artist->nationality;
}

?>

To convert a PHP object into a JSON string, use the json_encode() function.

// convert PHP object into a JSON string

$text = json_encode($anObject);

10. (a) What is AJAX? Using an XML diagram, explain how

the synchronous requeste is handled.

Asynchronous JavaScript with XML (AJAX) is a term used to describe a

paradigm that allows a web browser to send messages back to the server

without interrupting the flow of what’s being shown in the browser. This

makes use of a browser’s multi-threaded design and lets one thread handle the

browser and interactions while other threads wait for responses to

asynchronous requests.

The below figure annotates a UML sequence diagram where the white activity

bars illustrate where computation is taking place. Between the request being

sent and the response being received, the system can continue to process other

requests from the client, so it does not appear to be waiting in a loading state.

Responses to asynchronous requests are caught in JavaScript as events. The events

can subsequently trigger changes in the user interface or make additional requests.

This differs from the typical synchronous requests we have seen thus far, which

require the entire web page to refresh in response to a request.

Another way to contrast AJAX and synchronous JavaScript is to consider a web page

that displays the current server time. If implemented synchronously, the entire page

has to be refreshed from the server just to update the displayed time. During that

refresh, the browser enters a waiting state, so the user experience is interrupted.

(b) Explain the loading and processing of an xml document in

javascript with suitable example.

1. XML Processing in JavaScript

All modern browsers have a built-in XML parser and their JavaScript implementations

support an in-memory XML DOM API, which loads the entire document into

memory where it is transformed into a hierarchical tree data structure.

The DOM functions such as getElementById(), getElementsByTagName(), and

createElement() are used to access and manipulate the data.

For instance, the below code shows the loading of an XML document into an XML

DOM object, and it displays the id attributes of the <painting>elements as well as the

content of each painting’s <title> element

<script>

// load the external XML file

xmlhttp.open("GET","art.x

ml",false); xmlhttp.send();

xmlDoc=xmlhttp.responseX

ML;

// now extract a node list of all <painting> elements

paintings = xmlDoc.getElementsByTagName("painting");

if (paintings) {

// loop through each painting element

for (var i = 0; i < paintings.length; i++)

{
// display its id attribute

alert("id="+paintings[i].getAttribute("id"));

// find its <title> element

title =

paintings[i].getElementsByTagName(
"title"); if (title) {

// display the text content of the <title> element

alert("title="+title[0].textContent);

}

}

}
</script>

JavaScript supports a variety of node traversal functions as well as properties for

accessing information within an XML node.

alert() function – displays the string in a

alert dialog box. GetAttribute(id) - returns

the value of the attribute.
getElementsByTagName(tag) – returns an array of tags with the specified title. textContent()

– returns the html content in the specified tag

(c) Using functions, emulate a class with data members and

member functions in javascript.

Emulate Classes through Functions

Although a formal class mechanism is not available to us in JavaScript,

it is possible to get close by using functions to encapsulate variables and

methods together, as shown below.

function

Die(col) {

this.color=

col;

this.faces=[

1,2,3,4,5,6]

;

}

The ‘this’ keyword inside of a function refers to the instance, so that every reference

to internal properties or methods manages its own variables, as is the case with PHP.

One can create an instance of the object as follows, very similar to PHP.
var oneDie = new Die("0000FF");

