
VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 1 2021-22

VTU question paper solution -SS and CD -18CS61, July 2022

MODULE-1

1

a) Explain in details SIC-XE machine architecture -10 marks

Solution:

1. Memory

 Maximum memory available on a SIC/XE system is 1 megabyte (220 bytes)

 An address (20 bits) cannot be fitted into a 15-bit field as in SIC Standard

 Must change instruction formats and addressing modes

2. Registers

 9 registers (5 registers of SIC + 4 additional registers)

3. Data Format

 24-bit(3 Bytes) integer representation in 2’s complement

 8-bit(1 Byte) ASCII code for characters

There is a 48-bit floating-point data type

 fraction is a value between 0 and 1

 exponent is an unsigned binary number between 0 and 2047

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 2 2021-22

 zero is represented as all 0

4. Instruction Format

Format 1(1 Byte)

Format 2(2 Byte)

Format 3(3 Byte)

Format 4(4 Byte)

5. Addressing Mode

Base Relative Addressing Mode

b=1, p=0, TA=(B)+disp (0disp4095)

Program-Counter Relative Addressing Mode

b=0, p=1, TA=(PC)+disp (-2048disp2047)

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 3 2021-22

Direct Addressing Mode

b=0, p=0, TA=disp (0disp4095)

Index Addressing Mode

b=0, p=0, TA=(X)+disp

Immediate Addressing Mode

n=0, i=1, x=0, operand=disp

Indirect Addressing Mode

n=1, i=0, x=0, TA=(disp)

6. Instruction Set

 load and store:LDA, LDX, STA, STX LDB, STB, etc.

 Integer arithmetic: ADD, SUB, MUL, DIV

 Floating-point arithmetic operations

‒ ADDF, SUBF, MULF, DIVF

 Register move: RMO

 Register-to-register arithmetic operations

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 4 2021-22

‒ ADDR, SUBR, MULR, DIVR

 Supervisor call: SVC

 Conditional jump instructions

 JLT, JEQ, JGT: test CC and jump

 Subroutine linkage

 JSUB, RSUB: return address in register L

 Input and output

 Performed by transferring 1 byte at a time to or from the rightmost 8 bits of

register A

 Each device is assigned a unique 8-bit code, as an operand of I/O instructions

 Test Device (TD): < (ready), = (not ready)

 Read Data (RD), Write Data (WD)

 Input and output:

 I/O channels to perform I/O while CPU is executing other instructions: SIO,

TIO, HIO

b) List the various machine independent assembler features .explain the control sections

how the assembler convert them into object code. 10 marks

Solution:

Machine-Independent Assembler Features are

1. Literals

2. Symbol-Defining Statements

3. Expressions

4. Program Blocks

5. Control Sections

6. Program Linking

Control Sections
A control section is a part of the program that maintains its identity after assembly; each such control
section can be loaded and relocated independently of the others.

Different control sections are most often used for subroutines or other logical subdivisions of a program.

Control sections differ from program blocks in that they are handled separately by the assembler.

 The EXTDEF (external definition) statement in a control section names symbols, called external

symbols that are defined in this control section and may be used by other sections.

  The EXTREF (external reference) statement names symbols that are used in this control section and
are defined elsewhere. We need two new record types (Define and Refer) in the object program.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 5 2021-22

  A Define record gives information about external symbols that are defined in this control section –

that is, symbols named by EXTDEF.

  A Refer record lists symbols that are used as external reference by the control section – that is,

symbols named by EXTREF.

Handling External Reference

Case 1
15 0003 CLOOP +JSUB RDREC 4B100000

The operand RDREC is an external reference.

 The assembler has no idea where RDREC is

 inserts an address of zero

 can only use extended formatto provide enough room (that is, relative addressing for

external reference is invalid)

 The assembler generates information for each external reference that will allow the

loaderto perform the required linking

Case 2
190 0028 MAXLEN WORD BUFEND-BUFFER 000000

There are two external references in the expression, BUFEND and BUFFER

 The assembler inserts a value of zero

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 6 2021-22

 passes information to the loader

 Add to this data area the address of BUFEND

 Subtract from this data area the address of BUFFER

Case 3
On line 107, BUFEND and BUFFER are defined in the same control section and the expression

can be calculated immediately.

 107 1000 MAXLEN EQU BUFEND-BUFFER

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 7 2021-22

Algorithm:
Begin

read first input line

if OPCODE = ‘START’ then begin

save #[Operand] as starting addr

initialize LOCCTR to starting address

write line to intermediate file

read next line

end(if START)

else

initialize LOCCTR to 0

While OPCODE != ‘END’ do

begin

if this is not a comment line then

begin

if there is a symbol in the LABEL field then

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 8 2021-22

begin

search SYMTAB for LABEL

if found then

set error flag (duplicate symbol)

else

(if symbol)

search OPTAB for OPCODE

if found then

add 3 (instr length) to LOCCTR

else if OPCODE = ‘WORD’ then

add 3 to LOCCTR

else if OPCODE = ‘RESW’ then

add 3 * #[OPERAND] to LOCCTR

else if OPCODE = ‘RESB’ then

add #[OPERAND] to LOCCTR

else if OPCODE = ‘BYTE’ then

begin

find length of constant in bytes

add length to LOCCTR

end

else

set error flag (invalid operation code)

end (if not a comment)

write line to intermediate file

read next input line

end { while not END}

write last line to intermediate file

Save (LOCCTR – starting address) as

program length

End {pass 1}

Solution:

Basic function of loader are

1. Allocation: It allocates memory for the program in the main memory.

2. Linking: It combines two or more separate object programs or modules and supplies

necessary information.

3. Relocation: It modifies the object program so that it can be loaded at an address different

from the location.

4. Loading: It brings the object program into the main memory for execution.

 The absolute loader is a kind of loader in which relocated object files are created,

loader accepts these files and places them at a specified location in the memory.

 This type of loader is called absolute loader because no relocating information is

needed, rather it is obtained from the programmer or assembler.

 The starting address of every module is known to the programmer, this corresponding

starting address is stored in the object file then the task of loader becomes very simple

that is to simply place the executable form of the machine instructions at the locations

mentioned in the object file.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 9 2021-22

 In this scheme, the programmer or assembler should have knowledge of memory

management. The programmer should take care of two things:

 Specification of starting address of each module to be used. If some modification is

done in some module then the length of that module may vary. This causes a change

in the starting address of immediate next modules, it's then the programmer's duty to

make necessary changes in the starting address of respective modules.

 While branching from one segment to another the absolute starting address of

respective module is to be known by the programmer so that such address can be

specified at respective JMP instruction.

Process of Absolute Loader

RELOCATABLE LOADERS

Absolute loaders have a number of advantages: they are small, fast and simple. But they

have a number of disadvantages, too.

 The major problem deals with the need to assemble an entire program all at once. Since the

addresses for the program are determined at assembly time, the entire program must be

assembled at one time in order for proper addresses to be assigned to the different parts. This

means that a small change to one subroutine requires reassembly of the entire program. Also,

standard subroutines, which might be kept in a library of useful subroutines and functions, must

be physically copied and added to each program which uses them.

A relocatable loader is a loader which allows this delay of binding time. A relocatable

loader accepts as input a sequence of segments, each in a special relocatable load format, and

loads these segments into memory. The addresses into which segments are loaded are

determined by the relocatable loader, not by the assembler or the programmer.

Each segment is a subroutine, function, main program, block of global data, or some

similar set of memory locations which the programmer wishes to group together. Segments are

https://1.bp.blogspot.com/-zPU7ccRsimM/WvyQuqh5t5I/AAAAAAAAJMo/qh6Di7kB3LMdpm3UVXdwPcDQGZ1QWeeIwCLcBGAs/s1600/absolute+loader.png

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 10 2021-22

loaded into memory one after the other, to use as little space as possible. The relocatable load

format is defined so that separate segments can be assembled or compiled separately and

combined at load time.

Relocation

The relocation implied in the name "relocatable loader" refers to the fact that on two

separate loads, the same segment can be loaded into two different locations in memory. If any

of the segments which are loaded into memory before a segment change in size due to recoding

and reassembly between the two loads, then the addresses in memory into which the segment

is loaded will change by the same amount.

Consider the following simple program

BEGIN LD2 LENGTH
LOOP IN BUFFER(16)
 OUT BUFFER(18)
 DEC2 1
 J2P LOOP
 HLT
LENGTH CON 10
BUFFER ORIG *+24
 END BEGIN

This program has four symbols, BEGIN, LOOP, LENGTH, and BUFFER. If the program

were to be loaded into memory starting at location 0, then the values of these symbols would

be 0, 1, 6, and 7, respectively. If the starting address were 1000, the values of the symbols

would be 1000, 1001, 1006, and 1007; if the base address were 1976, the values would

be 1976, 1977, 1982, and 1983. In all cases, the addresses, for a base BASE, would

be BASE+0, BASE+1, BASE+6, and BASE+7. Thus, to relocate the program from starting at

an address BASE to starting at an address NEWBASE merely involves adding NEWBASE-

BASE to the values of all of the symbols. If the assembler would produce all code as if it had

a base of 0, then relocating this code would involve only adding the correct base.

If we were to start the program at 1000, the addresses would be

 code address generated

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 11 2021-22

BEGIN LD2 LENGTH 1006
LOOP IN BUFFER(16) 1007
 OUT BUFFER(18) 1007
 DEC2 1 1
 J2P LOOP 1001
 HLT 0
LENGTH CON 10 10
BUFFER ORIG *+24
 END BEGIN 1000

Solution:

. The analysis phase creates an intermediate representation from the given source code.

The synthesis phase creates an equivalent target program from the intermediate

representation

Symbol Table – It is a data structure being used and maintained by the compiler, consisting

of all the identifier’s names along with their types. It helps the compiler to function smoothly

by finding the identifiers quickly.

The compiler has two modules namely the front end and the back end. Front-end constitutes

the Lexical analyzer, semantic analyzer, syntax analyzer, and intermediate code generator.

And the rest are assembled to form the back end.

1. Lexical Analyzer –

It is also called a scanner. It takes the output of the preprocessor (which performs file

inclusion and macro expansion) as the input which is in a pure high-level language. It reads

the characters from the source program and groups them into lexemes (sequence of characters

that “go together”). Each lexeme corresponds to a token. Tokens are defined by regular

expressions which are understood by the lexical analyzer. It also removes lexical errors (e.g.,

erroneous characters), comments, and white space.

2. Syntax Analyzer – It is sometimes called a parser. It constructs the parse tree. It takes all the

tokens one by one and uses Context-Free Grammar to construct the parse tree.

3. Semantic Analyzer – It verifies the parse tree, whether it’s meaningful or not. It

furthermore produces a verified parse tree. It also does type checking, Label checking, and

Flow control checking.

4. Intermediate Code Generator – It generates intermediate code, which is a form that can be

readily executed by a machine We have many popular intermediate codes. Example – Three

address codes etc. Intermediate code is converted to machine language using the last two

phases which are platform dependent.

Till intermediate code, it is the same for every compiler out there, but after that, it depends

on the platform. To build a new compiler we don’t need to build it from scratch. We can take

the intermediate code from the already existing compiler and build the last two parts.

https://www.geeksforgeeks.org/compiler-lexical-analysis/
https://www.geeksforgeeks.org/compiler-design-introduction-to-syntax-analysis/
https://www.geeksforgeeks.org/intermediate-code-generation-in-compiler-design/

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 12 2021-22

5. Code Optimizer – It transforms the code so that it consumes fewer resources and produces

more speed. The meaning of the code being transformed is not altered. Optimization can be

categorized into two types: machine-dependent and machine-independent.

6. Target Code Generator – The main purpose of the Target Code generator is to write a code

that the machine can understand and also register allocation, instruction selection, etc. The

output is dependent on the type of assembler. This is the final stage of compilation. The

ptimized code is converted into relocatable machine code which then forms the input to the

linker and loader.

Solution:

1. Implementation of High-level Programming

A high-level programming language defines a programming abstraction: the programmer

specifies an algorithm in the language, and the compiler must translate it to the target

language. Higher-level programming languages are sometimes easier to develop in, but they

are inefficient, therefore the target applications run slower. Low-level language programmers

have more control over their computations and, in principle, can design more efficient code.

Lower-level programs, on the other hand, are more difficult to build and much more difficult

to maintain. They are less portable, more prone to errors, and more complex to manage.

https://www.geeksforgeeks.org/compiler-design-code-optimization/

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 13 2021-22

Optimized compilers employ ways to improve the performance of generated code,

compensating for the inefficiency of high-level abstractions.

In actuality, programs that utilize the register keyword may lose efficiency since

programmers aren’t always the best judges of extremely low-level matters like register

allocation. The ideal register allocation approach is very reliant on the design of the machine.

Hardwiring low-level resource management decisions like register allocation may actually

harm performance, especially if the application is executed on machines that aren’t meant for

it.

2. Optimization of computer architectures

Aside from the rapid evolution of computer architectures, there is a never-ending demand for

new compiler technology. Almost all high-performance computers leverage parallelism and

memory hierarchies as essential methods. Parallelism may be found at two levels: at the

instruction level, where many operations are performed at the same time, and at the processor

level, where distinct threads of the same program are executed on different processors.

Memory hierarchies address the fundamental problem of being able to produce either

extremely fast storage or extremely huge storage, but not both.

3. Design of new computer architectures

In the early days of computer architecture design, compilers were created after the machines

were built. That isn’t the case now. Because high-level programming is the norm, the

performance of a computer system is determined not just by its sheer speed, but also by how

well compilers can use its capabilities. Compilers are created at the processor-design stage

of contemporary computer architecture development, and the resultant code is used to

evaluate the proposed architectural features using simulators.

4. Program Translations:

The compilation is typically thought of as a translation from a high-level language to the

machine level, but the same approach may be used to translate across several languages. The

following are some of the most common applications of software translation technologies.

 Compiled Simulation

 Binary translation

 Hardware Syntheses

 Database Query Interpreters

5. Software productivity tools

Programs are possibly the most complex technical objects ever created; they are made up of

a plethora of little elements, each of which must be accurate before the program can function

properly. As a result, software mistakes are common; errors can cause a system to crash,

generate incorrect results, expose a system to security threats, or even cause catastrophic

failures in key systems. Testing is the most common method for discovering program flaws.

A fascinating and interesting complementary option is the use of data-flow analysis to

statically discover problems (that is before the program is run). Unlike program testing, the

data-flow analysis may uncover vulnerabilities along any possible execution path, not only

those used by the input data sets. Many data-flow-analysis techniques, originally developed

for compiler optimizations, may be used to build tools that assist programmers with their

software engineering responsibilities.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 14 2021-22

Solution:

write programs in a high-level language, which is Convenient for us to comprehend

and memorize. These programs are then fed into a series of devices and operating

system (OS) components to obtain the desired code that can be used by the machine.

This is known as a language processing system.

Components of Language processing system :

Preprocessor:–
 The pre-processor includes all header files and also evaluates whether a macro(A macro is a piece of
code that is given a name. Whenever the name is used, it is replaced by the contents of the macro by
an interpreter or compiler.
The purpose of macros is either to automate the frequency used for sequences or to enable more
powerful abstraction) is included. It takes source code as input and produces modified source code as
output. The pre-processor is also known as a macro evaluator, processing is optional that is if any
language that does not support #include and macros processing Is not required.

Compiler –
The compiler takes the modified code as input and produces the target code as output.

Input-Output

Assembler:

The assembler takes the target code as input and produces real locatable machine code as

output.

Linker:

A linker or link editor is a program that takes a collection of objects (created by assemblers

and compilers) and combines them into an executable program.

https://www.geeksforgeeks.org/preprocessor-works-c/
https://www.geeksforgeeks.org/compiler-design-tutorials/
https://www.geeksforgeeks.org/linker/

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 15 2021-22

Loader:
The loader keeps the linked program in the main memory.

Executable code:

It is the low level and machine specific code and machine can easily understand. Once the

job of linker and loader is done then object code finally converted it into the executable code.

Solution :

The lexical analyzer scans the input from left to right one character at a time. It uses two

pointers begin ptr(bp) and forward ptr(fp) to keep track of the pointer of the input scanned.

The forward ptr moves ahead to search for end of lexeme. As soon as the blank space is

encountered, it indicates end of lexeme. In above example as soon as ptr (fp) encounters a

blank space the lexeme “int” is identified. The fp will be moved ahead at white space, when

fp encounters white space, it ignore and moves ahead. then both the begin ptr(bp) and forward

ptr(fp) are set at next token. The input character is thus read from secondary storage, but

reading in this way from secondary storage is costly. hence buffering technique is used.A

block of data is first read into a buffer, and then second by lexical analyzer. there are two

methods used in this context: One Buffer Scheme, and Two Buffer Scheme. These are

explained as following below.

https://www.geeksforgeeks.org/difference-between-linker-and-loader/
https://www.geeksforgeeks.org/difference-between-source-code-and-object-code/

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 16 2021-22

Two Buffer Scheme: To overcome the problem of one buffer scheme, in this method two

buffers are used to store the input string. the first buffer and second buffer are scanned

alternately. when end of current buffer is reached the other buffer is filled. the only problem

with this method is that if length of the lexeme is longer than length of the buffer then

scanning input cannot be scanned completely. Initially both the bp and fp are pointing to the

first character of first buffer. Then the fp moves towards right in search of end of lexeme. as

soon as blank character is recognized, the string between bp and fp is identified as

corresponding token. to identify, the boundary of first buffer end of buffer character should

be placed at the end first buffer. Similarly end of second buffer is also recognized by the end

of buffer mark present at the end of second buffer. when fp encounters first eof, then one can

recognize end of first buffer and hence filling up second buffer is started. in the same way

when second eof is obtained then it indicates of second buffer. alternatively both the buffers

can be filled up until end of the input program and stream of tokens is identified.

This eof character introduced at the end is calling Sentinel which is used to identify the end

c.Define lexeme, token and pattern with example

Solution:

A token is a pair consisting of a token name and an optional attribute value. The token name is

an abstract symbol representing a kind of lexical unit, e.g., a particular keyword, or a sequence

of input characters denoting an identifier. The token names are the input symbols that the parser

processes. We will often refer to a token by its token name.

A pattern is a description of the form that the lexemes of a token may take. In the case of a

keyword as a token, the pattern is just the sequence of characters that form the keyword. For

identifiers and some other tokens, the pattern is a more complex structure that is matched by

many strings.

A lexeme is a sequence of characters in the source program that matches the pattern for a token

and is identified by the lexical analyzer as an instance of that token.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 17 2021-22

Token INFORMAL DESCRIPTION SAMPLE LEXEMES

if characters i, f if

else characters e, 1,s, e else

Comparison comparison< or > or <= or >= or == or ! = <=

Id letter followed by letters and digits Total

Numeral any numeric constant 3.4

Literal anything but ", surrounded by “ “hello world”

 In many programming languages, the following classes cover most or all of the tokens:

1. One token for each keyword. The pattern for a keyword is the same as the keyword

itself.

2. Tokens for the operators, either individually or in classes such as the token

3. One token representing all identifiers.

4. One or more tokens representing constants, such as numbers and literal strings.

5. Tokens for each punctuation symbol, such as left and right parentheses, comma, and

semicolon

Example: Consider the following C statement

printf ("Total = %d\n”, score) ;

bothprintf and score are lexemes matching the pattern for token id, and

"Total = %d\n” is a lexeme matching literal.

Define Context free Grammar

Solution :

CFG stands for context-free grammar. It is is a formal grammar which is used to generate all

possible patterns of strings in a given formal language. Context-free grammar G can be defined

by four tuples as:

1. G = (V, T, P, S)

Where,

G is the grammar, which consists of a set of the production rule. It is used to generate the string

of a language.

T is the final set of a terminal symbol. It is denoted by lower case letters.

V is the final set of a non-terminal symbol. It is denoted by capital letters.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 18 2021-22

P is a set of production rules, which is used for replacing non-terminals symbols(on the left

side of the production) in a string with other terminal or non-terminal symbols(on the right side

of the production).

S is the start symbol which is used to derive the string. We can derive the string by repeatedly

replacing a non-terminal by the right-hand side of the production until all non-terminal have

been replaced by terminal symbols.

Obtain CFG to generate strings of a’s and b’s having a substrings ab

Solution:

S → aSb, (Rule: 1)

S → ab (Rule: 2)

First compute some strings generated by the production rules of the grammar G in the above;

(i) S ⇒ ab, (Rule: 2)

(ii) S ⇒ aSb, (Rule: 1)

⇒ aabb, (Rule: 2)

i.e. ⇒ aabb ⇒ a2b2

(iii)S ⇒ aSb, (Rule: 1)

⇒ aaSbb, (Rule: 1)

⇒ aaabbb, (Rule: 2)

i.e. ⇒ aaabbb ⇒ a3b3

(iv)S ⇒ aSb, (Rule: 1)

⇒ aaSbb, (Rule: 1)

⇒ aaaSbbb, (Rule: 1)

⇒ aaaabbbb, (Rule: 2)

i.e. ⇒ aaaabbbb ⇒ a4b4

(v) S ⇒ aSb, (Rule: 1)

⇒ aaSbb, (Rule: 1)

⇒ aaaSbbb, (Rule: 1)

⇒ aaaaSbbbb, (Rule: 1)

⇒ aaaaabbbbb, (Rule: 2)

i.e. ⇒ aaabbb ⇒ a5b5

Hence; Language generated by the above grammar L(G) = {ab, a2b2, a3b3, a4b4, a5b5, a6b6, a7b7,.. ..

.. .. }By analyzing the above generated string form the grammar G, there has a similar pattern in

all computed strings, i.e.

 The length of the string is greater than or equal to 2.

 Number of a’s and b’s are equal.

 Presence of a’s followed by b’s.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 19 2021-22

Thus we can write the language of the grammar L(G) = {anbn : n ≥ 1}

b)

Solution:

A CFG is said to be ambiguous if there exists more than one derivation tree for the given

input string i.e., more than one LeftMost Derivation Tree (LMDT)

or RightMost Derivation Tree (RMDT)

This grammar: E -> E+E|id We can create a 2 parse tree from this grammar to obtain a

string id+id+id. The following are the 2 parse trees generated by left-most derivation:

Both the above parse trees are derived from the same grammar rules but both parse trees are

different. Hence the grammar is ambiguous.

Answer:

(a)

The general form for left recursion is

A → Aα1|Aα2| … . |Aαm|β1|β2| … . . βn

can be replaced by

A → β1A′|β2A′| … . . | … . . |βnA′

A’ → α1A′|α2A′| … . . |αmA′|ε

Algorithm:

- Arrange non-terminals in some order: A1 ... An

- for i from 1 to n do {

For j from 1 to i-1 do {

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 20 2021-22

Replace each production Ai → Aj ψ

By Ai → α1 ψ | ... | αk ψ

where Aj → α1 | ... | αk

}

 In the given question we have indirect left recursion.

Step1: Put S production in A

S → Aa | b

A→ Ac | A a d |bd | Ɛ

Step2: Eliminate left recursion from A

S → Aa | b

A→ bd A’ | ƐA’

A’→ c A’| ad A’|Ɛ

(b) Shift Reduce Parser:

Shift Reduce Parser is a type of Bottom-Up Parser. It generates the Parse Tree from Leaves to

the Root. In Shift Reduce Parser, the input string will be reduced to the starting symbol. This

reduction can be produced by handling the rightmost derivation in reverse, i.e., from starting

symbol to the input string.

Shift Reduce Parser requires two Data Structures

 Input Buffer

 Stack

There are the various steps of Shift Reduce Parsing which are as follows −

There are the various steps of Shift Reduce Parsing which are as follows −

 It uses a stack and an input buffer.

 Insert $ at the bottom of the stack and the right end of the input string in Input

Buffer.

 Shift − Parser shifts zero or more input symbols onto the stack until the handle

is on top of the stack.

 Reduce − Parser reduce or replace the handle on top of the stack to the left side

of production, i.e., R.H.S. of production is popped, and L.H.S is pushed.

 Accept − Step 3 and Step 4 will be repeated until it has detected an error or until

the stack includes start symbol (S) and input Buffer is empty, i.e., it contains $.

Handle:

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 21 2021-22

Each replacement of the Right side of production by the left side in the process above is known
as "Reduction" and each replacement is called "Handle."

Conflicts in Shift- Reduce Parser

Ans:

A LEX program consists of three

parts:

Declarati

ons

%

%

translation

rules

%

%

auxiliary

procedures

The declarations section includes declarations of variables,constants,and regular

definitions.

The translation rules of a lex program are statements of the

form

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 22 2021-22

R1 {action

1}

R2 {action

2}

.... ……

….

Rn {action n} where each Ri is regular expression and each action i, is a program fragment

describing what action the lexical analyzer should take when pattern Ri matches lexeme.

Typically, action i will return control to the parser. In Lex actions are written in C;in

general,however,they can be in any implementation language.

The third section holds whatever auxiliary procedures are needed by the

actions.

(b)
/*Lex Program to count numbers of lines, words, spaces and

characters

in a given statement*/

%{

#include<stdio.h>

int sc=0,wc=0,lc=0,cc=0;

%}

%%

[\n] { lc++; cc+=yyleng;}

[\t] { sc++; cc+=yyleng;}

[^\t\n]+ { wc++; cc+=yyleng;}

%%

int main(int argc ,char* argv[])

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 23 2021-22

{

 printf("Enter the input:\n");

 yylex();

 printf("The number of lines=%d\n",lc);

 printf("The number of spaces=%d\n",sc);

 printf("The number of words=%d\n",wc);

 printf("The number of characters are=%d\n",cc);

}

int yywrap()

{

 return 1;

}

Ans:

The UNIX utility yacc (Yet Another Compiler Compiler) parses a stream of token,

typically generated by lex, according to a user-specified grammar.

Structure of a YACC file

A yacc file looks much like a lex file:

 definitions

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 24 2021-22

%%

rules

%%

code

Definition: All code between %{ and %} is copied to the beginning of the resulting C

file.

Rules: A number of combinations of pattern and action: if the action is more than a single

command it needs to be in braces.

Code: This can be very elaborate, but the main ingredient is the call to yylex, the lexical

analyzer. If the code segment is left out, a default main is used which only calls yylex.

Definition section

There are three things that can go in the definitions section:

C code: Any code between %{ and %} is copied to the C file. This is typically used for

defining file variables, and for prototypes of routines that are defined in the code segment.

Definitions: The definition section of a lex file was concerned with characters; in yacc

this is tokens.

Example: %token NUMBER.

These token definitions are written to a .h file when yacc compiles this file.

Associativity rules These handles associativity and priority of operators.

Lex Yacc interaction

Conceptually, lex parses a file of characters and outputs a stream of

tokens; yacc accepts a stream of tokens and parses it, performing actions as appropriate.

In practice, they are more tightly coupled.

If your lex program is supplying a tokenizer, the yacc program will repeatedly call the

yylex routine. The lex rules will probably function by calling return every time they have

parsed a token.

If lex is to return tokens that yacc will process, they have to agree on what tokens there

are. This is done as follows:

For Example

1.The yacc file will have token definition %token NUMBER in the definitions

section.

2. When the yacc file is translated with yacc –d , a header file y.tab.h is created that has

definitions like #define NUMBER 258.

 3. The lex file can then call return NUMBER, and the yacc program can match on this token.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 25 2021-22

Rules section

The rules section contains the grammar of the language you want to parse. This looks like

statement : INTEGER ‘=’ expression

| expression

;

expression : NUMBER ‘+’ NUMBER

| NUMBER ‘-‘ NUMBER

;

This is the general form of context-free grammars, with a set of actions associated with each

matching right-hand side. It is a good convention to keep non-terminals (names that can be

expanded further) in lower case and terminals (the symbols that are finally matched) in upper

case.

The terminal symbols get matched with return codes from the lex tokenizer. They are typically

defines coming from %token definitions in the yacc program or character values.

(b)

. Matches any character except \n.

* Match zero or more occurrences of the preceding pattern.

? Matches zero or one occurrences of the preceding pattern.

Ex: -?[0-9]+ matches a signed number including an optional leading minus.

{ } 1) Indicates how many times a pattern can be present. Example: A{1,3} implies

one to three occurrences of A may be present.

2) If they contain name, they refer to a substitution by that name.

Ex: {digit}

$ Matches end of line as the last character of the pattern.

^ Negation.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 26 2021-22

(a)

S-Attributed Definitions.
An SDD is S-attributed if every attribute is synthesized.

If an SDD is S-attributed, we evaluate its attributes in any bottom-up ordering of the parse

tree nodes.

It is simpler to perform a post-order tree traversal and evaluate the attributes at a

node N when the traversal leaves N for the last time.

These definitions are implemented during bottom-up parsing because a bottom-up parse

corresponds to a post-order traversal, in other words, a post order traversal corresponds to the

order that an LR parser reduces the production body to its head.

L-Attributed Definitions.
The idea is that between attributes associated with a production body, the edges of a

dependency graph can go from right to left but not the other way round(left to right), hence

the name 'L-attributed'.

In other words, each attribute must either be;

1. Synthesized, or,

2. Inherited but with limited rules, i.e Suppose there is a production A → X1X2...Xn and

an inherited attribute Xi.a computed by a rule associated with this production, then the

rule only uses;

** inherited attributes that are associated with head A.

** Either inherited attribute or synthesized attributes associated with the occurrences

of symbols X1,X2, ..., Xi-1 located to the left of Xi.

** Inherited or synthesized attributes that are associated with such an occurrence

of Xi itself, only in such a way that no cycles exist in the dependency graph formed

by Xi attributes.

Syntax Tree

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 27 2021-22

Parse Tree

Annotated Parse Tree

(b)

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 28 2021-22

Common Three Address Instruction Forms-

The common forms of Three Address instructions are-

1. Assignment Statement-

x = y op z and x = op y

Here,

 x, y and z are the operands.

 op represents the operator.

It assigns the result obtained after solving the right-side expression of the assignment
operator to the left side operand.

2. Copy Statement-

x = y

Here,

 x and y are the operands.

 = is an assignment operator.

It copies and assigns the value of operand y to operand x.

3. Conditional Jump-

If x relop y goto X

Here,

 x & y are the operands.

 X is the tag or label of the target statement.

 relop is a relational operator.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 29 2021-22

If the condition “x relop y” gets satisfied, then-

 The control is sent directly to the location specified by label X.

 All the statements in between are skipped.

If the condition “x relop y” fails, then-

 The control is not sent to the location specified by label X.

 The next statement appearing in the usual sequence is executed.

4. Unconditional Jump-

goto X

Here, X is the tag or label of the target statement.

On executing the statement,

 The control is sent directly to the location specified by label X.

 All the statements in between are skipped.

5. Procedure Call-

param x call p return y

Here, p is a function which takes x as a parameter and returns y.

Quadruples

Operator Arg1 Arg2 Result

Uminus c T1

+ a b T2

- T2 T1 T3

Triplets

Operator Arg1 Arg2

Uminus c

+ a b

- (1) (0)

Indirect Triples

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 30 2021-22

100 (0)

101 (1)

102 (2)

Solution:

Syntax directed definition specifies the values of attributes by associating semantic rules

with the grammar productions. It is a context free grammar with attributes and rules together

which are associated with grammar symbols and productions respectively.

The process of syntax directed translation is two-fold:

Construction of syntax tree and

• Computing values of attributes at each node by visiting the nodes of syntax tree.

Semantic actions

Semantic actions are fragments of code which are embedded within production bodies by

syntax directed translation.

They are usually enclosed within curly braces ({ }).

It can occur anywhere in a production but usually at the end of production.

(eg.)

 E—> E1 + T {print ‘+’}

Types of translation

• L-attributed translation

o It performs translation during parsing itself.

o No need of explicit tree construction.

o L represents ‘left to right’.

• S-attributed translation

o It is performed in connection with bottom up parsing.

o ‘S’ represents synthesized.

Production Semantic Rules

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 31 2021-22

D —>TL L.inh = T.type

T —> int T.type =integer

T —> float T.type = float

L —> L1, id L1.inh = L.inh

addType (id.entry, Linh)

L —> id addType (id.entry, L.inh)

(b) Issues in Code Generation

In the code generation phase, various issues can arises:

1. Input to the code generator

2. Target program

3. Memory management

4. Instruction selection

5. Register allocation

6. Evaluation order

Input to the code generator

o The input to the code generator contains the intermediate representation of

the source program and the information of the symbol table. The source

program is produced by the front end.

o Intermediate representation has the several choices:

 a) Postfix notation

 b) Syntax tree

 c) Three address code

o We assume front end produces low-level intermediate representation i.e. values

of names in it can directly manipulated by the machine instructions.

o The code generation phase needs complete error-free intermediate code as an

input requires.

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 32 2021-22

2. Target program:

The target program is the output of the code generator. The output can be:

a) Assembly language: It allows subprogram to be separately compiled.

b) Relocatable machine language: It makes the process of code generation easier.

c) Absolute machine language: It can be placed in a fixed location in memory and

can be executed immediately.

3. Memory management

o During code generation process the symbol table entries have to be mapped to actual

p addresses and levels have to be mapped to instruction address.

o Mapping name in the source program to address of data is co-operating done by the

front end and code generator.

o Local variables are stack allocation in the activation record while global variables are in

static area.

4. Instruction selection:

o Nature of instruction set of the target machine should be complete and uniform.

o When you consider the efficiency of target machine then the instruction speed and

machine idioms are important factors.

o The quality of the generated code can be determined by its speed and size.

Example:

The Three address code is:

1. a:= b + c

2. d:= a + e

Inefficient assembly code is:

1. MOV b, R0 R0→b

2. ADD c, R0 R0 c + R0

3. MOV R0, a a → R0

4. MOV a, R0 R0→ a

VTU –6TH SEMESTER –CSE -SYSTEM SOFTWARE &COMPLIER DESIGN, JULY 2022 PAPER SOLUTION

CSE-Dept 33 2021-22

5. ADD e, R0 R0 → e + R0

6. MOV R0, d d → R0

5. Register allocation

Register can be accessed faster than memory. The instructions involving operands in

register are shorter and faster than those involving in memory operand.

The following sub problems arise when we use registers:

Register allocation: In register allocation, we select the set of variables that will reside

in register.

Register assignment: In Register assignment, we pick the register that contains

variable.

Certain machine requires even-odd pairs of registers for some operands and result.

6. Evaluation order

The efficiency of the target code can be affected by the order in which the

computations are performed. Some computation orders need fewer registers to hold

results of intermediate than others.

	Process of Absolute Loader
	RELOCATABLE LOADERS
	Relocation
	1. Implementation of High-level Programming
	2. Optimization of computer architectures
	3. Design of new computer architectures
	4. Program Translations:
	5. Software productivity tools

	S-Attributed Definitions.
	L-Attributed Definitions.
	Common Three Address Instruction Forms-
	1. Assignment Statement-
	2. Copy Statement-
	3. Conditional Jump-
	4. Unconditional Jump-
	5. Procedure Call-

	Input to the code generator
	2. Target program:
	3. Memory management
	4. Instruction selection:
	Example:

	5. Register allocation
	6. Evaluation order

