e ,-.‘

GEGCSPCHENE

ven | | | | T«T] '
N J ..L L %ot
Fourth Semester B E. Degree Eﬁlﬂ“"m July/August 2022

Microcontroller and .W Systems

18CS44

Time: 3 hrs e - ,ﬁn Marks: 100
! Note: Answer any FIVE full questions, M; ONE full question from each module.
£ 1 a Compare Microprocessors and um i (96 Marks)
‘ b, Discuss the ARM design %IW ' 06 Marks)
% ¢ Wnh a neat diagram, exphm the four main hardware components of an ARM based
{3 embedded device. o (08 Marks)
g] $ ‘\
| - OR
72 a Explain the ARM Core data flow model with a fleat diagram. (0% Marks)
- b. Draw the buuc‘lyom of a generic program status register and bmﬂy explain the various
W fields. ‘ (06 Marks)
‘ 4 c. What is Pipelining? Ilustrate it with a simple example. (06 Marks)
i A= Explam the different Data Procbuﬁg Instructions in Ahﬂ (10 Marks)
7 é b Briefly explain the dtﬂ'ercnt Load ~ Store IMWWM.PM (10 Marks)
’ = LR
: O
l' 4 a Wricnpfoyambfronmdbuckwu ch by considering an example. ﬂn-..
j! b Explain Co - Processor Instructions of processor. w >
e

Write a note on Profiling and Cycle Counting. Qm

§ a Whati Em&d&dﬂym?héﬂacmmmmm'nmd

b, List purposes o dead system with examples.
¢ Write short notes on 1) I Time ; i) Watch Dog Timer.
& Rea W
6 a " Briefly describe Q;Z»Mn of EM system.
b, Explain the following :

i) 12CBus i) splm\yo hm

-v. ‘.~

'. -'
e
R

2 Any revealing of canficanen. sppea w
3
i"
;

7 . 't—.‘."'.

Important Note | On completing your answers.

Scanned by Scanner Go

http://scannergo.net/?utm_source=pdf&utm_medium=watermark&utm_campaign=scannergo

.

S

“Qn"a\ o el i 5. il .- .
p 18CS44
undamental G (06 Marks)
Hardware Softw. @-W
- ; g;:::mwmh::;zud Embedded ﬁ&:ﬂmmmmwﬂhcm
c. With a neat block diagram, how source file togﬁjoc! file translation takes place kﬂ-‘l;gr‘::;
e based firmware development. . %
e S oy %
9 a Witha “‘d‘dmm explain OWW Architecture. o’ (08 Marks)
¢ x (06 Marks)
b. Explain Multm.dmﬁ; | o
c. Explain the concept of Binary Smpan c-v, : | Marks)
&M
10 a Em&mhoflm&mwbpmntﬁnvn%nmm)B)ﬁW“ -
b. Write a note on c_) : Marks)
c. Explain the eon.c'\of with a neat diagram. Marks)
v ¢ 3

Scanned by Scanner Go

http://scannergo.net/?utm_source=pdf&utm_medium=watermark&utm_campaign=scannergo

USN

T

“3 CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURL,

ACCREDITED WITH A+ GRADE BY NAAC

Internal Assessment Test 4 — March 2022

Sub:

Microcontroller and Embedded System Sub Code: | 18CS44 ‘ Branch: | ISE

Date:

26/09/2022 | Duration: | 180 min’s | Max Marks: [100 | Sem/Sec: | Il / A, B and C

OBE

Answer any FIVE FULL Questions

MARKS [CO |RBT

a. Compare Microprocessor and Microcontroller

Solution:
Microprocessor Microcontroller
Sl\ilsiggrocessor is the heart of Computer Micro Controller is the heart of an embedded system.
It is only a processor, so memory and 'O Micro Controller has a processor along with intemal
components need to be connected externally memory and I'O components.
Memory and IO has to be connected Memory and I'O are already present, and the internal
externally, so the circuit becomes large. circuit is small.
You can’tuse it in compact systems You can use it in compact systems.
Cost of the entire systemis high Cost of the entire system is low

Due to external components, the total power
consumption is high. Therefore, itis not ideal
for the devices running on stored power like

As external components are low, total power
consumption is less. So it can be used with devices
running on stored power like batteries.

batteries.
Most of the microprocessors do not have Most of the microcontrollers offer power-saving
power saving features. mode.
: : It is used mainly in a washing machine, MP3 players,
mainly used in personal computers. : ’ AT
y P P and embedded systems.

Microprocessor has a smaller number of
registers, so more operations are memory-
based.

Microcontroller has moreregister. Hence the
programs are easier to write.

6 COl| L2

b. Discuss the ARM design philosophy.

Solution:

Physical features of ARM processor design:

1. Power: The ARM processor has been specifically designed to be small to reduce power
Consumption and extend battery operation essential for applications such as mobile
phones and personal digital assistants (PDAs).

2. High Code Density: since embedded systems have limited memory due to cost and/or
physical size restrictions.

3. Price sensitive: use slow and low-cost memory devices.

4. Reduce the area of the die: For a single-chip solution, the smaller the area used by the
embedded processor, the more available space for specialized peripherals. This in turn
reduces the cost.

5. Debug technology within the processor: So the software engineers can view what is
happening while the processor is executing code. With greater visibility. Software
engineers can resolve issues faster. Hence reduces development costs.

6 COl| L2

c. With a neat diagram, explain the four main hardware components of an ARM
based embedded device.

Solution:

8 COl| L2

SR Memory controller
Interrupt controller
[AHB—exlcma! brjdge}

AHB arbater
AHB-APB bridge |

Real-ume clock
Console Serinl UARTSs

[ARM] [Cam_rollers] [Pcripherajs_] Bus

ROM
SRAaM
FLASHROM

DRAM

External bus

Ethernet
physical

driver

An example of an ARM-based embedded device, a microcontroller.
The device into four main hardware components:
— ARM processor
— Controllers
— Peripherals
—Bus
1. ARM Processor :

An ARM processor comprises a core (the execution engine that processes instructions
and manipulates data) It is surrounded with components that interface it with a bus.

These components can include memory management and caches.

2. Controllers:

Coordinates important functional blocks of the system.

2 Controllers:

e Interrupt controllers

* memory controllers

3. Peripherals:

Required for input-output operation external to the chip

4. Abus:

Used to communicate between different parts of the device

a. Explain the ARM core data flow model with a neat diagram
Solution:

Data

1 J | Instruction

decoder

Read

rl5 | Register file] Rd
pc rl—rl5 Result

Rn | A Rm | B

F't B Acc

)
[ﬁd‘d.l'ess‘ register]

e

Address

Barrel shifter

Von-Neumann implementation — data items and instructions share the same bus,
Instruction decoder translates instructions before they are executed. Load instruction:
copy data from memory to register. Store instruction: copy data from register to
memory . There are no data processing instructions that directly manipulate data in
memory. Data items are placed in the register file — a storage bank made up of 32-bit
registers. ARM instructions typically have two source registers Rn and Rm and one
destination register Rd. ALU and MAC (Multiply-accumulate) unit takes the register
values Rn and Rm from A and B buses and computes a result. Load and store
instructions use the ALU to generate an address to be held in the address register and
broadcast on the Address bus. The register Rm can be alternatively pre-processed in
the barrel shifter before it enters the ALU. For load and store instructions the
incrementer updates the address register before the core reads or writes the next
register value from or to the next sequential memory location.

COl

L2

b. Draw the basic layout of a generic program status register and briefly explain
the various fields.
Solution:

* The cpsr :Dedicated 32-bit register and resides
in the register file

Fields 1 Flags | Status : Extension fI Control :
ol e 1|F|T| Mode

Function ——— ==t
Condition Interrupt Processor

flags Masks mode
Thumb

state

Figure 2.3 A generic program status register (psr).

COl

L2

CpST :
Divided into four fields, each 8 bits wide: flags, status, extension, and control. The
control field contains the processor mode, state, and interrupt mask bits. The flags
field contains the condition flags.

» Condition Codes: N, Z, C, V

e Interruption mask: I(IRQ), F(FIQ)

* Thumb Enable Bit

* Mode(5-bit)

Solution:

These instructions operate on the contents of registers
They DO NOT affect memory

arithmetic logical move

(has destination

manipulation
register)

(set flags only)

comparison I ‘

Syntax:
<Operation>{<cond>} {5} {Rd,} Rn, Operand2
Examples:

c. What is Pipelining? Illustrate it with a simple example. 6 Col| L2
Solution:
A pipeline is the mechanism a RISC processor uses to execute instructions. Using
a pipeline speeds up execution by fetching the next instruction while other
instructions are being decoded and executed.
Figure 2.7 ARM7 Three-stage pipeline.
0 Fetch)—-0 Decode)—’-OExecute)
Fetch Decode Execute
f \
Time | Cycle J ADD }—-'H)——'U J
\
Cycle2 {| SUB H-f] ADD H-f]
f
Cycle3 {| CMP Hof) SUB H-t] ADD |
Y
Figure 2.8 Pipelined instruction sequence.
a Explain the different Data Processing Instructions in ARM 10 CO2| L2

Example: The following simple subtract instruction subtracts a value stored in register r2 from a
value stored in register r1. The result is stored in register r0.

PRE 10 = 0x00000000

rl = 0x00000002

r2 = 0x00000001

SUB r0, r1, 12

POST r0 = 0x00000001

Syntax: <instruction={<cond=}{S} Rd, N

MOV Move a 32-bit value into a register Rd=N

MVN move the NOT of the 32-bit value into a register Rd=~N

b. Briefly explain the different Load-Store Instruction categories used with ARM
Solution:

LOAD-STORE INSTRUCTIONS:

Load-store instructions transfer data between memory and processor registers.
There are three types of load-store instructions: single-register transfer, multiple-
register transfer, and swap.
Single-Register Transfer:
'] These instructions are used for moving a single data item in and out of aj
register.
'] The data types supported are signed and unsigned words (32-bit), half-words
(16-bit), and bytes.

Here are the various load-store single-register transfer instructions.

LDR load word into a register Rd <- mem32[address]
STR save byte or word from a register | Rd ->= mem32[address|
LDRB | load byte into a register Rd <- mem8|address|
STRB | save byte from a register Rd -> mem8|address|
LDRH load halfword into a register Rd <- mem16[address|
STRH save halfword into a register Rd -> mem 16[address]
LDRSB | load signed byte into a register Rd <- SignExtend
(mem8[address])
LDRSH | load signed halfword into a register | Rd <- SignExtend
(mem16[address])

LDR and STR instructions can load and store data on a boundary alignment that 1s the same as
the data type size being loaded or stored.

For example, LDR can only load 32-bit words on a memory address that is a multiple of
four bytes—0, 4, 8, and so on.

Syntax: <LDR|STR>{<cond>}{B} Rd,addressing!
LDR{<cond>}SB|H|SH Rd, addressing?

STR{<cond>}H Rd, addressing?

10

CO2

L2

a. Write a program for forward and backward branch by considering an example 06 Ccoz| L3
Solution:
Example: This example shows a forward and backward branch. Because these loops are address specific,
we do not include the pre- and post-conditions. The forward branch skips three instructions. The
backward branch creates an infinite loop.
B Jorward
ADD ¥l r2, #4
ADD i), v, #2
ADD 3, r7, #4
forward
SUB i, r2 #4
backward
ADD vl r2, #4
SUB i, r2 #4
ADD v r6, ¥7
B backward
b. Explain Co-Processor Instructions of ARM Processor 06 CO2| L2
Solution:
' Syntax: CDP{<cond=} cp, opcodel, Cd, Cn {, opcode2}
<MRC |MCR>{<cond>} cp, opcodel, Rd, Cn, Cm {, opcode2}
<LDC |STC={<cond>} cp, Cd, addressing
cop coprocessor data processing—perform an operation in a coprocessor
MRC MCR | coprocessor register transfer—move data to/from coprocessor registers
LDC STC | coprocessor memory transfer—load and store blocks of memaory to/from a coprocessor
v In the syntax of the coprocessor instructions,
o The ¢p field represents the coprocessor number between pi) and pl 5
o The apeade fields describe the operation to take place on the coprocessor.
o The Cn. Cm, and Cd fields describe registers within the coprocessor.
¥" The coprocessor operations and registers depend on the specific coprocessor you are using,
¥ Coprocessor 15 (CP13) is reserved for system control purposes, such as memory management,
write buffer control, cache control, and identification registers.
Example: This example shows a CP/5 register being copied into a general-purpose register.
; transferring the contents of CP135 register 0 to register rl1()
MRC pl5, 0, rl0, c0, c0, 0
Here CP15 register-{) contains the processor identification number. This register is copied into the
general-purpose register #11,
08 co2| L2

c. Write a note on Profiling and Cycle Counting.
Solution:

a. What is an embedded system? Different between

Solution:

An ES is an electronic /electro-mechanical system designed to perform a specific
function and a combination of both hardware and firmware (software) Every ES is
Unique and hardware as well as the firmware is highly specialized to the

application domain.

by the user.

Key factor Performance is key Application specific

factor. requirements are key
factors.

Power More Less

Consumption

Response Not critical Critical for some

il applications

Execution Need not be Deterministic for certain

deterministic types of ES like ‘Hard Real
Time ’ systems.

Contents A system which is a A system which is a
combination of a generic combination of special
hardware and a General purpose hardware and
Purpose Operating System embedded OS/firmware for
for executing a variety of executing a specific set of
applications. applications

05 General purpose operating It may or not contain an
system (GPOS). operating system for

functioning.

Alterations Applications are alterable Applications are not-

alterable by the user.

06

CO4

L2

b. List any four purposes of Embedded system with examples.

Solution:

Each embedded system is designed to serve the purpose of any one or a
combination of the following tasks:

1. Data collection/Storage/Representation

2. Data Communication

3. Data (signal) processing

4. Monitoring

1. Data collection/Storage/Representation:

ES is designed for one of the purpose:

— Data collection from external world: Data collection is done mainly for:
— Storage

— Analysis

— Manipulation

— Transmission

Examples :

— Videos, images, text, electrical signals etc.

2. Data communication:

« Communication means :

— The way data is transmitted / received

— It means communication can be from:

— Complex satellite communication systems -> simple home networking
systems.

* The transmission medium can be:

— Wired

— Wireless

Data can be transmitted either by analog /digital

3. Data (Signal) Processing:
* Data of any type collected can be used for :

— Data processing:- like

+ Speech coding B?St Example: =3
Digital hearing aid(improves the
hearing capacity by data

processing)
- i Mo usw /'_h'--\ i
v/
ol
ﬂ Speaer 70
* Audio video coding ! # i s
) u:mm LY ' f./u latesry

B0 = 0E
s | e |

EoE=om
4. Monitoring:
» Almost all embedded products coming under the medical domain are with
monitoring functions only.
* Electro cardiogram machine (ECG) is intended to do the monitoring of the
heartbeat of a patient but it cannot impose control over the heartbeat.

08

CO4

L2

e Other examples with monitoring function are digital CRO, digital
multimeters, and logic analyzers.

a. Briefly describe the classification of Embedded system
Solution:

c. Write short notes on i) Real Time Clock ii) Watch dog timer 06 1 CO3
Solution:
Real Time Clock
* |s a system component responsible for keeping track of
time.
* RTC holds information like:

— Current time (in hours, minutes and seconds) in 12
hour/24 hour format,

— Date, month, year, day of the week, etc.

— Supplies timing reference to the system.
* RTCis intended to function even in the absence of power.
— The RTC chip contains a microchip for holding the time and
date related information

— Backup battery cell for functioning in the absence of

power, in a single IC package.
‘Watch Dog Timer:

* Is to monitor the firmware execution and reset the
system processor/microcontroller
— When the program execution hangs up (or)

— Generates an Interrupt in case the execution time for a
task is exceeding the maximum allowed limit.

* If the firmware execution doesn’t complete due to
malfunctioning, within the time required by the
watchdog
— A reset pulse is generated and this will reset the

processor (if it is connected to the reset line of the
processor).
8 CO4| L2

CLASSIFICATION OF EMBEDDED SYSTEMS
It is possible 1o have a i of classifications for embedded systems,
based on different criteria. Some of the critenia used in the classification of
embedded systems are as follows:

(1) Based on generation

(2} Complexity and performance requirements

(3) Based on deterministic behaviour

(4) Based on iriggenng.
The classification based on deterministic system behaviour is applicable for “Real Time’ s)!l.c'lm The
application/task execution behaviour for an embedded system can be either deterministic or noo- & sic.
Based on the execution behaviour, Real Time embedded systems are clasafied nto Hand and Soft. We wall
discuss about hard and soft real time systems in 2 later chapter. Embedded Systems which are “Reactive” in
nature (Like process control systems in industrial control applications) can be classified based on the trigger.
Reactive sysiems can be cither event triggered or time triggpered.

1.4.1 Classification Based on Generation

This classification is based on the order in which the embedded processing systems evolved from the
first version to where they are today. As per this cniterion, embedded systems can be classified into the

following:
14.1.1 First Generation The carly embedded systems were built around 8hit microprocessors like
SO8S and Z80, and 4bit microc dlers. Simple in hard circuits with Armware developed in Assembly

code. Digital telephone keypads. stepper motor control units etc. are examples of this.

1.4.1.2 Second Generation Thesc are embedded systems built around | 6bit microprocessors and 8 or
16 bit microcontrollers, following the first generation embedded systems. The instruction set for the second

processon 1 .nrumhmwmﬁuzndpwncﬂullhmlhﬁmmmmw
mﬂmllrn Some of the second g bedded systems ¢ 1 embedded g systems
for their of Data Acqg Systems, SCADA systems, etc, are examples of second gcnn:nm
embedded systems.

1.4.1.3 Third Generation With advances in processor technology. embedded system developers staried
making use of powerful 32bitl processors and 16bit microcontrollers for their design. A new concept of

application and domain specific processors/controllers ke Digital Signal Processors (DSP) and Application
Specific Integrated Ciecuits (ASICs) came into the picture. The instruction set of processors became more
complex and powerful and the concept of instruction pipelining also evolved. The processor market was
flooded with different types of processors from different vendors. Processors like Intel Pentivm. Motorola
63K, cte. gained attention in high performance embedded requirements. Dedicated embedded real time and
general purpose operating systems entered into the embedded market. Embedded systems spread its ground
Lo ereas like robotics, media. industrial process control, networking, etc.

1.4.1.4 Fourth Generation The advent of Svstem on Chips (300), reconfigurable processors and
miulticore processors are bringing high performance. tight integration and miniaturisation into the embedded
device market. The S0 technique implements a total sysiem on a chip by integrating different functionalities
with a processor core on an integrated circoit. We will discuss about SoCs in a later chapter. The fourth
gencration embedded systems ane making wse of high performance real time embedded operating systems
for their functioning. Smart phone devices, mobile internet devices (MIDs), etc. are examples of fourth
generation embedded systems.

1.4.1.5 What Next? The processor and embedded market is highly dynamic and demanding. So “what
will be the next smart mowve in the next embedded generation?” Let’s wait and see.

1.4.2 Classification Based on Complexity and Performance

This ¢lassification is based on the complexity and sysiem performance requiremenis. According to this
classification, embedded systems can be grouped into the following:

1.4.21 Small-5cale Embedded Systems Embedded systems which are simple in application needs
und where the performance requirements are not time critical fall under this category. An electronic toy is a
typical example of 4 small-scale embedded system. Small-scale embedded systems are wsually built around
lowe performance and low cost § or 16 bit microprocessors/microcontrollers. A small-scale embedded system
Mmay Of may not contain & operating <ystem for its fanctioning.

1.4.2.2 Medium-Scale Embedded Systems Embedded systems which are slightly complex in
hardware and fimmware (software) reguirements a1l under this category. Medium-scale embedded systems
are usually built around medium performance, low cost 16 or 32 bit microprocessorsimicrocontrollers or
digital signal processors. They usually contain an embedded operating system (either genernl purpose or real
time operating syvstem) for functioning.

1.4.2.3 Large-Scale Embedded Systems/Complex Systems Embedded systems which imvolve
highly complex hardware and firmware requirements fall under this category. They are employed in mission
critical applications demanding high performance. Such systems are commonly built around high performance
32 or 64 bit RISC processorsicontrollers or Reconfigurable System on Chip {REoC) ar multi-core processors
and programmable logic devices. They may contain multiple processors/controllers and co-units ardware
accelerators for effloading the processing requirements from the main processor of the system. Decoding/
encoding of media, cryptographic function implementation, etc. are examples for processing requircments
which can be implemented using a co-processonhardware accelerator. Complex embedded systems usually
contain a high performance Real Time Operating System (RTOS) for task scheduling. prioritisation. and
management.

b. Explain the following:
1) I2C Bus i1) SPI Bus iii) Reset Circuit iv) 1-Wire Interface
Solution:

Inter Integrated Circuit (12C) Bus The Inter Integrated Circuit Bus (12C-Pronounced ‘I square
C’) is a synchronous bi-directional half duplex (one-directional communication at a given point of time) two
wire serial interface bus. The concept of 12C bus was developed by ‘Philips semiconductors’ in the early
1980s. The onginal intention of 12C was to provide an easy way of connection between a microprocessor/
microcontroller system and the peripheral chips in television sets. The 12C bus comprise of two bus lines,
namely; Serial Clock-SCL and Serial Data-SDA. SCL line is responsible for generating synchronisation
clock pulses and SDA is responsible for transmitting the senial data across devices. 12C bus is a shared bus
system to which many number of I2C devices can be connected. Devices connected to the 12C bus can act as
either *Master’ device or ‘Slave’ device. The *Master’ device is responsible for controlling the communication
by initiating/terminating data transfer, sending data and generating necessary synchronisation clock pulses.
“Slave’ devices wait for the commands from the master and respond upon receiving the commands. “Master’
and ‘Slave’ devices can act as either transmitter or receiver. Regardless whether a master is acting as transmitter
or receiver, the synchronisation clock signal is generated by the “Master” device only. 12C supports multi

masters on the same bus. The following bus interface diagram shown in Fig. 2.26 illustrates the connection
of master and slave devices on the 12C bus.

SCL SDA
SDA
Port Fdl.ﬂ!;{ SCL
Slave 1
SCL 12C Device
(Microprocessor/ EEPROM)
Controller)
sSCL Slave 2
SDA 12C Device

LYJ

12C bus
Fig. 226 12C Bus Interfacing

The I2C bus interface is built around an input buffer and an open drain or collector transistor. When the
bus is in the idle state, the open drain/collector transistor will be in the Aoating state and the output lines (SDA
and SCL) switch to the "High Impedance’ state. For proper operation of the bus, both the bus lines should
be pulled to the supply voltage (+5V for TTL family and +3.3V for CMOS family devices) using pull-up
resistors. The typical value of resistors used in pull-up is 2.2K. With pull-up resistors, the output lines of the
bus in the idle state will be *HIGH".

The address of a I2C device is assigned by hardwiring the address lines of the device to the desired logic
level. The address to various 12C devices in an embedded device is assigned and hardwired at the time of
designing the embedded hardware. The sequence of operations for communicating with an [2C slave device
is listed below:

1. The master device pulls the clock line (SCL) of the bus to *“HIGH’

2. The master device pulls the data line (SDA) ‘LOW’, when the SCL line is at Jogic “HIGH" (This is the

“Start” condition for data transfer)

3. The master device sends the address (7 bit or 10 bit wide) of the *slave’ device to which it wants to
communicate, over the SDA line. Clock pulses are generated at the SCL line for synchronising the bit
reception by the slave device. The MSB of the data 1s always transmitted first. The data in the bus is
valid during the ‘HIGH" period of the clock signal

4. The master device sends the Read or Write bit (Bit value = | Read operation; Bit value = (0 Write
operation) according to the requirement

5. The master device waits for the acknowledgement bit from the slave device whose address is sent on
the bus along with the Read/Write operation command. Slave devices connected to the bus compares
the address received with the address assigned to them

12

CO4

L2

6. The slave device with the address requested by the master device responds by sending an acknowledge

bit (Bit value = 1) over the SDA line

7. Upon receiving the acknowledge bit, the Master device sends the 8bit data to the slave device over

SDA line, if the requested operation is ‘Write to device'. If the requested operation is *Read from
device’, the slave device sends data to the master over the SDA line

8. The master device waits for the acknowledgement bit from the device upon byte transfer complete for

a write operation and sends an acknowledge bit to the Slave device for a read operation

9. The master device terminates the transfer by pulling the SDA line *HIGH™ when the clock line SCL is

at logic "HIGH' (Indicating the *STOP" condition)

The first generation [2C devices were designed to support data rates only up to 100kbps. Over time there
have been several additions to the specification so that there are now five operating speed categories; Namely,
Standard mode (Sm - Data rate up to 100kbit/sec), Fast mode (Fm - Data rate up to 400kbit/sec). Fast mode
Plus (Fm+ - Data rate up to 1Mbit/sec), and High-speed mode (Hs-mode - Data rate up to 3.4Mbit/sec) and
an Ultra Fast-mode (UFm), with a bit rate up to 5 Mbit/s for unidirectional I2C bus.

2.4.1.2 Serial Peripheral Interface (SPI) Bus The Serial Peripheral Interface Bus (SPI) is a synchronous
bi-directional full duplex four-wire senal interface bus. The concept of SPI was introduced by Motorola. SPI
is a single master multi-slave system. It is possible to have a system where more than one SPI device can be
master, provided the condition only one master device is active at any given point of time, is satisfied. SPI
requires four signal lines for communication. They are:
Master Out Slave In (MOSI): Signal line carrying the data from master to slave device. It is also
known as Slave Input/Slave Data In (SI/SDI)
Master In Slave Out (MISO): Signal line carrying the data from slave to master device. It is also
known as Slave Output (SO/SDO)
Serial Clock (SCLK): Signal line carrying the clock signals
Slave Select (88): Signal line for slave device select. It is an active low signal

The bus interface diagram shown in Fig. 2.27 illustrates the connection of master and slave devices on
the SP1 bus.

The master device is responsible for generating the clock signal. It selects the required slave device by
asserting the corresponding slave device's slave select signal *LOW". The data out line (MISO) of all the
slave devices when not selected floats at high impedance state.

The senal data transmission through SPI bus is fully configurable. SPI devices contain a certain set of
registers for holding these configurations. The serial peripheral control register holds the various configuration
parameters like master/slave selection for the device, baudrate selection for communication, clock signal
control, etc. The status register holds the status of various conditions for transmission and reception.

SPI works on the principle of “Shift Register’. The master and slave devices contain a special shift register
for the data to transmit or receive. The size of the shift register 1s device dependent. Normally it is a multiple
of 8. During transmission from the master to slave, the data in the master's shift register is shifted out to
the MOSI pin and it enters the shift register of the slave device through the MOSI pin of the slave device.
Al the same time the shifted out data bit from the slave device's shift register enters the shift register of the
master device through MISO pin. In summary, the shift registers of *master’ and “slave’ devices form a
circular buffer. For some devices, the decision on whether the LS/MS bit of data needs to be sent out first is
configurable through configuration register {e.g. LSBF bit of the SP1 control register for Motorola’s 68HC12
controller).

When compared to [2C, SPI bus is most suitable for applications requiring transfer of data in *streams’.

MOsI SCL MISO

MISO
SCL
MOSI 1 MOSI Slave 1
5 SCL SPI device
A mster MISD (e.g. Serial
{Microprocessos’ S5 EEPROM)
Controller)
SS]'I.--—J
S5y
MOSI e
- AVe
f:“I;’_S]EJ 5Pl device
ep:LCH
e {ep)
SPI bus
5Pl bus interfacing
Reset Circuit
The reset circuit is essential to ensure Ve Voe
that the device is not operating at a i j: &
voltage level where the device is not 5 TCR“sel i H
guaranteed to operate, during system — Ph' = B -§ R
power ON. The reset signal brings = TS e £
the internal registers and the different 7=, _| R = Rﬂfﬂ pulse
hardware systems of the processor/ E 1 Active low
controller to a known state and starts =~ 2 i)
the firmware execution from the ; c
reset vector (Normally from vector & GND GND
address (x0000 for conventional -
processors/controllers. The reset RC based reset circult

vector can be relocated to an address

for processors/controllers supporting bootloader). The reset signal can be either active high (The processor
undergoes reset when the reset pin of the processor is at logic high) or active low (The processor undergoes
reset when the reset pin of the processor is at logic low). Since the processor operation is synchronised to a
clock signal, the reset pulse should be wide enough to give time for the clock oscillator to stabilise before the
internal reset state starts. The reset signal to the processor can be applied at power ON through an external
passive reset circuit comprsing a Capacitor and Resistor or through a standard Reset IC like MAXEI0
from Maxim Dallas (www.maxim-ic.com). Select the reset IC based on the type of reset signal and logic
level (CMOS/TTL) supported by the processor/fcontroller in use. Some microprocessorsfcontrollers contain
built-in internal reset circuitry and they don’t require external reset circuitry. Figure 2.35 illustrates a resistor
capacitor based passive reset circuit for active high and low configurations. The reset pulse width can be
adjusted by changing the resistance value R and capacitance value C.

2.4.1.4 1-Wire Interface |-wire interface is an asynchronous half-duplex communication protocol
developed by Maxim Dallas Semiconductor (https/'www. maxim-ic.com). It is also known as Dallas 1-Wire®
protocol. It makes use of only a single signal line (wire) called DO for communication and follows the
master-slave communication model. One of the key feature of 1-wire bus is that it allows power to be sent
along the signal wire as well. The 1-Wire slave devices incorporate internal capacitor (typically of the order
of 800 pF) to power the device from the signal line. The 1-wire interface supports a single master and one
or more slave devices on the bus. The bus interface diagram shown in Fig. 2.29 illustrates the connection of
master and slave devices on the |-wire bus.

Ve
47K
H Do Slave 1
Port
acps L-wire device
: 2
GND (e.g.. DS2T62 Battery

monitor 1C)
Master !
(Microprocessor/

Controller) Do Sl
l-wire device
- (ep: DS2431 1024
N .
oD Bit EEPROM)

1]

Fig. 229 1-Wire Interface bus

a. What are the operational and non operational quality attributes of a
embedded system
Solution:

Operational Quality Attributes

The operational quality attributes represent the relevant quality attributes related to the Embedded System
when it is in the operational mode or ‘online” mode. The important quality attributes coming under this
category are listed below:

{1} Response

{2} Throughput

{3) Reliability

{4) Maintainability

(5) Security
(6) Safety

Non-Operational Quality Attributes

The quality attributes that needs to be addressed for the product *not” on the basis of operational aspects are
grouped under this category. The important quality attributes coming under this category are listed below.
(1) Testability & Debug-ability
(2} Evolvability
i(3) Portability
{4} Time to prototype and market
{5) Per unit and total cost.

10

CO4

L2

b. Explain the different communication buses used in automotive applications.
Solution:

Automotive Communication Buses

Agtomotive applications make use of serial buses for communication, which greatly reduces the amount of
wiring required inside a vehicle. The following section will give you an overview of the different types of
seriil interface buses deployed in automotive embedded applications.

4.2.2.1 Controller Area Network (CAN) The CAN bus was onginally proposed by Robert Bosch,
pioneer in the Automotive embedded solution providers. It supports medium speed (ISO11519-class B with
data rates up to 125 Kbps) and high speed (ISO11898 class C with data rates up to |Mbps) data transfer,
CAN is an event-driven protocol interface with support for error handling in data transmission. It is generally
employed in safety system like airbag control; power train systems like engine control and Antilock Brake
System (ABS); and navigation systems like GPS. The protocol format and interface application development
for CAN bus will be explained in detail in another volume of this book series.

Local Interconnect Network (LIN) LIN bus is a single master multiple slave (up to 16
independent slave nodes) communication interface. LIN is a low speed, single wire communication interface
with support for data rates up to 20 Kbps and is used for sensor/actuator interfacing. LIN bus follows the
master communication triggering technique to eliminate the possible bus arbitration problem that can occur
by the simultaneous talking of different slave nodes connected to a single interface bus. LIN bus is employed
in applications like mirror controls, fan controls, seat positioning controls, window controls, and position
controls where response time is not a critical issue.

Media Oriented System Transport (MOST) Bus The Media Oriented System Transport
({MOST) is targeted for high-bandwidth automotive multimedia networking (e.g. audio/video, infotainment
system interfacing), used primarily in European cars. A MOST bus is a multimedia fibre-optic point-to-point
network implemented in a star, ring or daisy-chained topology over optical fibre cables. The MOST bus
specifications define the physical (electrical and optical parameters) layer as well as the application layer,
network layer, and media access control. MOST bus is an optical fibre cable connected between the Electrical
Optical Converter (EQOC) and Optical Electrical Converter (OEC), which would translate into the optical
cable MOST bus.

CO4

L2

c. Design an FSM model for Tea/coffee vending machine
Solution:

The tea/coffee vending is iniiated by user inserting a 5 rupee coin. Afier inserting the coin, the user can
either select ‘Coffee’ or “Tea’ or press “Cancel” to cancel the order and take back the coin.

The FSM representation for the above requirement is given in Fig. 7.5.

Inits simplest representation, 1t contains four states namely; “Wait for coin’ “Wait for User Input’, “Dispense
Tea’ and ‘Dispense Coffee’. The event ‘Insert Coin® (5 rupee coin insertion), transitions the state to “Wait for
User Input’. The system stays in this state until a user input is received from the buttons “Cancel’, *Tea’ or
*Coffee’ (Tea and Coffee are the drink select button). If the event triggered in *Wait State” is “Cancel’ button
press, the coin is pushed out and the state transitions to “Wait for Coin'. If the event received in the “Wait
State’ is either “Tea” button press, or “Coffee” button press, the state changes to ‘Dispense Tea” and “Dispense
Coffec’ respectively. Once the coffee/tea vending is over. the respective states transitions back to the “Wait
for Coin” state. A few modifications like adding a timeout for the “Wait State” (Currently the *“Wait State” is
infinite; it can be re-designed to a timeout based “Wail State’. If no user input is received within the timeout
period, the coin is retumed back and the state automatically transitions to “Wait for Coin” on the timeout
event) and capturing another events like, “Water not available’, “Tea/Coffee Mix not available” and changing
the state to an ‘Error State’ can be added to enhance this design. It is left to the readers as exercise.

Event: Insert Coin
Siate A) Action: ok

State A: Wait for coin

State B: Wait for user input
State C: Dispense tea

""-'('U State D: Dispense coffee

Event: Cancel Buttor
Action: Coin Qut

FSM Madel for Automatic Tea\Coffee Vending Machine

CO4

L2

a. Explain the fundamental issues in hardware and software co design.
Fundamental Issues of H/w, S/w Co-Design: Few are listed below:

1. Selecting the model

2. Selecting the Architecture

3. Selecting the Language

4. Partitioning system requirements into hardware and software

1. Selecting the model:

* Models are used for capturing and describing the system characteristics

* A model is a formal system consisting of objects and composition rules

It is hard to make a decision on which model should be followed in a
particular system design.

* Most often designers switch between a variety of models from the
requirements specification to the implementation aspect of the system design.
Have objectives vary with each phase.

2. Selecting the Architecture:

» A model only captures the system characteristics

— Does not provide information on ‘how the system can be manufactured

* The architecture specifies:

— how a system is going to implement in terms of the number and types of
different components and the interconnection among them.

3. Selecting the Language:

* A programming Language captures:

— ‘Computational Model’ and maps it into architecture

» A computational model can be captured:

— Multiple programming languages like C, C++, C#, Java etc. for software
implementations

— Languages like VHDL, System C, Verilog etc. for hardware implementations
» The only pre-requisite in selecting a programming language for capturing a
model is that [] the language should capture the model easily.

4. Partitioning system requirements into hardware and software:

* Deals with the implementation aspect of a System level Requirement

* It may be possible to implement the system requirements in either hardware
or software (firmware)

» Various hardware software trade-offs like performance, re- usability, effort
etc. are used for making a decision on the hardware-software partitioning

CO5

b. Explain the assembly language based embedded firmware development with a
diagram

* ‘Assembly Language’ is the human readable notation with Mnemonics

* ‘Machine language’ is a processor understandable language with 1s and Os
» Assembly language and machine languages are:

— Processor/controller dependent

— L.e. Program written for one processor will not work with others

» Assembly language programming;:

COs

L2

— Is the process of writing processor specific code in mnemonic form

— Converting the mnemonics into actual processor instructions [/machine
language

— By using an assembler

* The general format of an assembly language instruction :

— Opcode followed by Operands

— In 8051 Processor:

* MOV A, #30
Language OPCODE (Action to be OPERAND
carried out) (data)
Assembly Language MOV A #30
(Mov to Accumulator)
Machine Language 01110100 00011110

* An opcode can have no-operand / single operand / dual operand /
more

c. With a neat diagram, how source file to object file translation takes place in high
level language based firware development.

* High Level Language : Like C,C++

* A software utility called ‘cross-compiler’ :

— Converts the high level language to target processor specific machine code

* The cross-compilation of each module generates a corresponding object file.

* The software program called linker/locater is responsible for assigning
absolute address to object files during the linking process

» The Absolute object file created from the object files corresponding to
different source code modules contain information about the address where
each instruction needs to be placed in code memory

* A software utility called ‘Object to Hex file converter’ translates the absolute
object file to corresponding hex file (binary file)

Library Files
Source File 1
(¢ letH+ etc.) —_— szcﬁ:: iler - Object File 1
(Module- 1) -eomp
Source File 2
Module ; 3
(.l i) — = 1 > Object File 2
(Module-2) Cross-compiler
.-Db‘ ot to H File . I Linker/
jeet to Hex Fi s x inker
Con z 4+—— Absolute Object File < L S

Machine Code
{Hex File)

High level language to machine language conversion process

COs

L2

9 la. With a neat diagram, explain operating system architecture

Solutions:
I 1
s User Applications
4% 4» 43 43 - Application
"f'_ = , ‘ y J lk . b .
Memory management I 2 | interface (API)
Process management 'E '
{_ Time management 'i
[File system management | £
{_ VO system management | o
b “g g~ “ Device driver
gt JE— : * interface
(Underlying hardware J

The Operating System Architecture

The kernel is the core of the operating system

— It is responsible for managing the system resources and the communication
among the hardware and other system services

— Kernel acts as the abstraction layer between system resources and user
applications

— Kernel contains a set of system libraries and services.

* For a general purpose OS, the kernel contains different services like

— Process Management

— Primary Memory Management

— File System management

— I/O System (Device) Management

— Secondary Storage Management

— Protection

— Time management

— Interrupt Handling

The program code corresponding to the kernel applications/services are kept:
— In a contiguous area [i.e. (OS dependent) [| In primary (working)
memory (and)

— Is protected from the un-authorized access by user programs/applications

* The memory space at which the kernel code is located is known as ‘Kernel
Space’

* All user applications are loaded to a specific area of primary memory and
this memory area is referred as ‘User Space’

* The partitioning of memory into kernel and user space is purely Operating
System dependent.

CO6

L2

Solution:

The value of a semaphore variable in binary semaphores is either 0 or 1. The
value of the semaphore variable is initially set to 1, but if a process requests a
resource, the wait() method is invoked, and the value of this semaphore is
changed from 1 to 0. When the process has finished using the resource, the
signal() method is invoked, and the value of this semaphore variable is raised
to 1. If the value of this semaphore variable is 0 at a given point in time, and
another process wants to access the same resource, it must wait for the prior
process to release the resource. Process synchronization can be performed in
this manner.

The binary semaphores are quite similar to counting semaphores, but their
value is restricted to 0 and 1. In this type of semaphore, the wait operation
works only if semaphore = 1, and the signal operation succeeds when
semaphore= 0. It is easy to implement than counting semaphores.

Release
(Value=0)

Initial value=1=—> Available Unavailable Initial value=0

Release (value =1)

b. Explain Multithreading 06 CO6 | L2
Solutions:

Multithreading advantages:

* Better memory utilization.

» Since the process is split into different threads, when one thread enters a wait

state, the CPU can be utilized by other.

 Hence Efficient CPU utilization. The CPU is engaged all time.

*Speeds up the execution of the process.

c. Explain the concept of Binary Semaphore 6 CO6| L2

10

In

IDE
[la“

[la“

a. Explain the role of Integrated Development Environment (IDE) for embedded
software development.
Solutions:

Environment (IDE) stands for an integrated environment for developing and
debugging the target processor specific embedded firmware.

71 “Cross-complier (for cross platform development and complier for same
platform development)”,
0 “Linker”, and

Some IDEs may provide —

"1 interface to target board emulators,

"] target processor”s/ controller*s Flash memory programmer, etc. IDE may be
command line based or GUI based.

NOTE: The Keil pVision IDE & An Overview of IDEs — lest as an exercise/
self study topic.

The Integrated Development Environment (IDE) itself will be providing]
simulator support and they help in debugging the firmware for checking its
required functionality.
In certain scenarios, simulator refers to a soft model (GUI model) of the]
embedded product. For example, if the product under development is a|
handheld device, to test the functionalities of the various menu and user|
interfaces, a soft form model of the product with all UI as given in the end|
product can be developed in software.
Soft phone is an example for such a simulator.
Emulator is hardware device which emulates the functionalities of the
target device and allows real time debugging of the embedded firmware in
a hardware environment.

embedded system development context, Integrated Development

is a software package which bundles —
‘Text Editor (Source Code Editor)”,

‘Debugger”.

CO6

c. Explain the concept of deadlock with a neat diagram

Solution:

Deadlock is a situation where a set of processes are blocked because each
process is holding a resource and waiting for another resource acquired by
some other process. Consider an example when two trains are coming toward
each other on the same track and there is only one track, none of the trains can
move once they are in front of each other. A similar situation occurs in
operating systems when there are two or more processes that hold some
resources and wait for resources held by other(s). For example, in the below
diagram, Process 1 is holding Resource 1 and waiting for resource 2 which is
acquired by process 2, and process 2 is waiting for resource 1

Deadlock can arise if the following four conditions hold simultaneously
(NecessaryConditions)

Mutual Exclusion: Two or more resources are non-shareable (Only one
processcanuseatatime) Hold and Wait: A process is holding at least one
resource.

b. Write a note on Message passing CO6 | L2
Solutions:
Message Passing is a synchronous / asynchronous information exchange
mechanism for Inter Process/ thread Communication
* Through shared memory lot of data can be shared:
— Whereas only limited amount of information / data is passed through
message passing
» Message passing is relatively fast and free from the synchronization
overheads compared to shared memory.
* Three ways it can be done:
— Message Queue
— Mailbox
— Signalling
Process which wants to talk to another process posts the message to a First-In-
First-Out (FIFO) queue called ‘Message queue’,
— Which stores the messages temporarily in a system defined memory object,
to pass it to the desired process
Messages are sent and received through:
— Send: Name of the process to which the message is to be sent.
— Receive: Name of the process from which the message is to be received.
The messages are exchanged through a message queue
The implementation of the message queue, send and receive methods are OS
kernel dependent.
Mailbox is a special implementation of
message queue
* Usually used for one way communication
* Only a single message is exchanged through mailbox whereas ‘message
queue’ can be used for exchanging multiple messages
* One task/process creates the mailbox and other tasks/process can subscribe to
this mailbox for getting message notification
» The implementation of the mailbox is OS kernel dependent
CO6 | L2

No Preemption: A resource cannot be taken from a process unless the process
releases sources. Circular Wait: A set of processes are waiting for each other
in circular form.

Resource 1

Assigned
to

Assiened

to
Resource 2

	ScannerGo_1665638401837.pdf (p.1-2)
	VTU QP MCES Solution.pdf (p.3-24)

