CMF	=													1	21
	TITUTE OF			USN										3	
TEC	HNOLOGY								l .					(.MR
				Interna	l Assesme	nt Test	-111					r			
Sub:		BASIC ELECTRIC	CAL ENGINEER	RING								Code:	21ELE2:	3	
	Date:	30 /8/2022	Duration:	90 mins	Ma	x Mark	s: 50) [Sem:	2nd so	em	Branch:	EE/EC/A	AI/AD	
			I	Answer an	ny FIVE F	ULL Q	uesti	ons							
													Marks	CO	E RBT
	What is eartearthing.	thing? Why earth	ing is require	d?. With	neat dia	gram	expla	in t	he dif	feren	t type	es of	[10]	CO5	L2
2 a)	With a neat	diagram, describ	e the main pa	rts of sy	nchronou	ıs gen	erato	r wi	th the	eir fu	nctio	ns.	[5]	CO4	L2
	conductors.	of a 3-phase, 8-po Calculate the rm Assume the coil	s value of the	emf per	r phase it	flux	per p	ole	is 0.1	wb s	inusc		[5]	CO4	L3
		diagram explain nen a three phase			etic field	is pro	duce	d in	the ai	ir gap	of a	С	[5]	CO4	L2
	<u> </u>	300 V, 50Hz indurrents is 2.5 Hz. I				ency	and v	olta	ige. T	he fr	equer	ncy of	[5]	CO4	L3
-	Derive an excore type tra	xpression for EM ansformers.	F induced in	a single	phase tra	nsfor	mer.	Con	npare	betw	een s	hell and	[5]	CO3	L1
4b)	List differer	nt types of loss in	a transforme	r and exp	plain eac	h one	in br	ief.					[5]	CO3	L2

CMR INSTITUTE OF TECHNOLOGY		USN									M
		Internal .	Assesment Tes	i –III							
Sub:	BASIC ELECTRIC	CAL ENGINEERING						Code:	21ELE2	3	
Date:	30 /8/2022	Duration: 90 mins	Max Mai	ks: 50	Sen	n: 2nd	sem	Branch:	EE/EC/A	AI/AD	
		Answer any	FIVE FULL	Questio	ns						
									Marks	OB	
What is ear earthing.	thing? Why earth	ing is required?. With r	neat diagram	expla	n the d	iffere	nt typ	es of	[10]	CO CO5	R:
2 a) With a near	t diagram, describ	e the main parts of synd	chronous ge	nerato	with th	neir fu	ınctio	ns.	[5]	CO4]
2b) The stator of conductors	of a 3-phase, 8-po . Calculate the rm	le, 750 rpm alternator he value of the emf per is 5/6 th full pitched and	as 72 slots, phase if flux	each o	f which ole is 0.	conta	ains 1 sinus	0	[5]	CO4]
	t diagram explain hen a three phase	how a rotating magneti supply is given.	c field is pro	duced	in the a	air ga _l	p of a	С	[5]	CO4]
		ction motor runs at rate Find slip and running sp		and v	oltage.	The fi	reque	ncy of	[5]	CO4]
	expression for EM cansformers.	F induced in a single p	hase transfo	mer. (Compar	e betv	veen s	shell and	[5]	CO3	
4b) List differe		a transformer and expl			_				[5]	CO3	

5 a)	What will happen if a transformer is supplied with DC input. Justify your answer.	[4]	CO3	L2
5 b)	A 40KVA, 1-phase transformer has core loss of 450 W and full load copper loss 850 W. If the			
	power factor of the load is 0.8. Calculate			
	(i) Full load efficiency	[6]	CO3	L3
	(ii) Total losses at half load	[U]	003	L3
	(iii) Maximum efficiency at unity power factor			
	(iv) Load for maximum efficiency			
	A 50KVA, single phase transformer has primary and secondary turns of 300 and 20			
	respectively. The primary winding is connected to a 2200V, 50 Hz supply.			
	(i) Calculate no load secondary voltage	[6]	CO3	L3
	(ii) Approximate values of primary and secondary currents on full load			
	(iii) Maximum value of flux density			
6b)	Explain the construction of a single phase transformer with a neat diagram.	[4]	CO3	L2
7 a)	Derive an expression for frequency of induced emf in case of 3 phase alternator	[4]	CO4	L2
7 b)	A 3 phase induction motor with 4 poles is supplied from an alternator having 6 poles and			
	running at 1000 rpm. Calculate			
	(i) Synchronous speed of induction motor	[6]	CO4	L3
	(ii) Its speed when slip is 0.04			
	(iii) Frequency of rotor emf when speed is 600rpm			

5 a)	What will happen if a transformer is supplied with DC input. Justify your answer.	[4]	CO3	L2
	A 40KVA, 1-phase transformer has core loss of 450 W and full load copper loss 850 W. If the			
	power factor of the load is 0.8. Calculate			
	(i) Full load efficiency	[6]	CO3	L3
	(ii) Total losses at half load	[O]	COS	L3
	(iii) Maximum efficiency at unity power factor			
	(iv) Load for maximum efficiency			
	A 50KVA, single phase transformer has primary and secondary turns of 300 and 20			
	respectively. The primary winding is connected to a 2200V, 50 Hz supply.			
	(i) Calculate no load secondary voltage	[6]	CO3	L3
	(ii) Approximate values of primary and secondary currents on full load			
	(iii) Maximum value of flux density			
6b)	Explain the construction of a single phase transformer with a neat diagram.	[4]	CO3	L2
7 a)	Derive an expression for frequency of induced emf in case of 3 phase alternator	[4]	CO4	L2
7 b)	A 3 phase induction motor with 4 poles is supplied from an alternator having 6 poles and			
	running at 1000 rpm. Calculate			
	(i) Synchronous speed of induction motor	[6]	CO4	L3
	(ii) Its speed when slip is 0.04			
	(iii) Frequency of rotor emf when speed is 600rpm			

Cu
T.
i a
ia
Lu
Cu
5.
••••••
•••••
•••••

10000

6 a) (11) Also, Ds= 50x18 50000 = 340.924 146.66

)	Moximum flux dissity.
ļ	EMF at primary side, Vp=Ep= 2200.
	=> Vp = 4.4480mNp.
	=) 2200 = 4.44 x 50 × pm x 300
	\$m2 0.0330 Wb.
	Assume aug = 60 cm² 60 cm² 0.0330
	1 Arce 60 X10 T
	= 5.5 mb/m2
	= 5.5 mb/m2

Coils | winding

Secondary Coil. -> Coil Connected to the la primary Coils → Coil Connected to Supply. -> Vertical portion of steel. -> timbs → Top or bottom portions → Yokes. -> 2 Coils that are Electrically not Connected but a linked with one another through magnetic flux in the Core. $V_1 \otimes V_2 \otimes V_3 \otimes V_4 \otimes V_4 \otimes V_5 \otimes V_6 \otimes V_6$ operation! 2 principles Involved in the operation of transformer. 1. Electromagnetism: - An Electric Current produces a magnetic field. 2. Electromagnetic Induction: - A change in magnetic field within a Coil Induces an Emf across the Ends A change in the primary Circuit Greates a changing magnetic field, this in twin Induces a Voltage in the Secondary Coel.

Electromagnetism:—

Assum a Conductor is Casaging Current as shown in fig.

Wrap your fingers around the Conductor in direction of Current; thumb points in I I N the direction of magnetic field.

The direction of magnetic field.

The Self-Induction:— Whenever there is a change in the flux linked with a Coil, an Emf is induced,

The flux linked with a Coil, an Emf is induced, if the Emf is Induced in the Same Circuit, then it is "Self Induction".

b) Mutual Induction: — Assume there are 2 Coils placed

reaser to Each other

— first Coil Carrier Some Current I, which give

rise to a magnetic field B.

— Since the 2 Coils are neaser some flux lin

will link with the 2nd Coil also.

will link with the 2nd Coil also.

- Now as Current changes, do linked with the 2nd Coil also changes, hence an Emf Induced in the Second Coil also. I pre-requisites.

- when N2 > N, -> Step-up transformer.

- when N, >N2 -> Step-down transformer.

P= Rotor & Stator poles.

Dividing with No on both Sides

 $\frac{N_s - N}{N_s} = \frac{120f_r}{PN_s}$ 120 fr

Ns-N

$$N_s = \frac{130f_s}{p(120f)} = \frac{f_s}{f}$$
.
 $S = \frac{f_s}{f}$.
 $f_r = Sf$.
The frequency of notor Included Emf
in Running Condition (for) is Slip times
the Supply frequency (f).

Toduction Motori

18

76)

Allunctor DM

TM

P=4

The frequency of allerator

and TM stater is the

dame $f_s = 4000 \text{ pm}$

 $\Rightarrow \frac{1}{120} = \frac{6 \times 1000}{120} = \frac{6 \times 1000}{120} = \frac{500}{120}$

$$N_{s} = \frac{120}{7} \cdot \frac{120 \times 50}{4}$$

$$f_{\sigma} = s \cdot \frac{1}{2}s$$

$$= \frac{N_s - N_{\sigma}}{N_a} \cdot \frac{1}{2}s \cdot \frac{1}{2}N_{\sigma} = 600$$

$$= \left(\frac{1500 - 600}{1500}\right) 50.$$

$$\int_{1}^{1} \frac{30 \, H_{2}}{1500} = \frac{30 \, H_{2}}{1500} =$$