USN	
-----	--

Internal Assesment Test - II

Sub:	OPERATIONS	RESEARCH	I					Code:	20MBA24
Date:	27-08-2022	Duration:	90 mins	Max Marks:	50	Sem:	II	Branch:	MBA

										О	BE
									Marks	СО	RBT
	Part A	A - Answer	Any Two F	ull Questio	ons (2* 20 :	= 40 ma	rks)				
(a)	Define	the term Op	timal cost in	Transporta	tion.				[03]	CO2	L1
)	Explair	n the Proced	ure to compu	te the Tran	sportation (Cost by	VAM.		[07]	CO2	L2
:)	Examir	ne the proces	ss to compute	e the Assign	nment cost	by Hung	garian.		[10]	CO2	L3
		-	-								
(a)	Conver	rt the transpo	ortation probl	em into a b	alanced tra	nsportat	ion pro	oblem.	[03]	CO2	L2
				Dest	ination			Supply			
			1	2	3		4				
	es.	1	5	12	6		10	300			
	Source	2	7	8	10		3	400			
		3	9	4	9		2	300			
		3 Demand	9 200	300	9 450		2 250	300			
b)	assigne	Demand are four job	200 so to be assuchine. The sin the follow	300 igned to the amount of wing matrix	450 ne machine time in hou.	es. Only	250 one j	ob could b		CO2	L3
b)	assigne machin	Demand are four job ed to one manes are given	200 os to be assachine. The sin the follow M1	igned to the amount of wing matrix M2	450 ne machine time in hou.	es. Only urs requ	250 one j	ob could be the jobs in M4		CO2	L3
o)	assigne machin	Demand are four job ed to one mates are given	200 os to be assachine. The sin the follow M1 2	igned to the amount of ving matrix M2 3	450 ne machine time in hou.	ms required M3	250 one j	ob could be the jobs in M4 5		CO2	L3
b)	assigne	Demand are four job ed to one manes are given J1 J2	200 os to be assachine. The sin the follow M1	igned to the amount of ving matrix M2 3	450 ne machine time in hou.	M3 4 6	250 one j	ob could be the jobs in M4 5 7		CO2	L3
b)	assigne	Demand are four job ed to one mates are given	200 os to be assachine. The sin the follow M1 2	igned to the amount of ving matrix M2 3	450 ne machine time in hou.	ms required M3	250 one j	ob could be the jobs in M4 5		CO2	L3
b)	assigne	Demand are four job ed to one manes are given J1 J2 J3 J4	200 so to be assectione. The sin the following M1 2 4 7	300 igned to the amount of ving matrix M2 3 5 8 5	450 ne machine time in hou	M3 4 6 9 8	one j ired fo	ob could be the jobs in M4 5 7 8 4	n	CO2	L3
b)	assigne machin	Demand are four job ed to one manes are given J1 J2 J3 J4	200 so to be assachine. The sin the follow M1 2 4 7 3	300 igned to the amount of ving matrix M2 3 5 8 5	450 ne machine time in hou	M3 4 6 9 8	one j ired fo	ob could be the jobs in M4 5 7 8 4	n	CO2	L3
	Calcula	Demand are four job ed to one manes are given J1 J2 J3 J4 ate the optimising time.	200 so to be assachine. The sin the follow M1 2 4 7 3	igned to the amount of ving matrix M2 3 5 8 5 ent of jobs	450 ne machine time in hou	M3 4 6 9 8	one j ired fo	ob could be the jobs in M4 5 7 8 4	n	CO2	
	Calcula	Demand are four job ed to one manes are given J1 J2 J3 J4 ate the optimising time.	200 os to be assachine. The sin the follow M1 2 4 7 3 num assignm	igned to the amount of ving matrix M2 3 5 8 5 ent of jobs	450 ne machine time in hou	M3 4 6 9 8	one j ired fo	ob could be the jobs in M4 5 7 8 4	n 1		L3
(b)	Calcula	Demand are four job ed to one manes are given J1 J2 J3 J4 ate the optimising time.	200 os to be assachine. The sin the follow M1 2 4 7 3 num assignm	igned to the amount of ving matrix M2 3 5 8 5 ent of jobs	450 ne machine time in hou. to the mac	M3 4 6 9 8	one j ired fo	ob could be the jobs in the jo	n 1		L3

			Destination							
		1	2	3	4	5				
ce	1	10	2	3	15	9	25			
Sourc	2	5	10	15	2	4	30			
Sc	3	15	5	14	7	15	20			
	4	20	15	13	-	8	30			

	Demand	20	20	30	10	25			
Calcul	late the initial ba	asic feasible	e solutio	n using	each of	the following method	⊐ ds		
	ompare their tota					J			
a)	Northwest Cor	ner Method							
b)	Least Cost Cel	l Method.							
Define	e the term Balan	ced Problen	n in Ass	ignment.			[03]	CO2	L
						signors with a view		CO2	L
	-		_		_	atrix representing th		CO2	L
						termine the maximu			
_	le profit.	1	0	1					
	SHIPS	P		Q		R			
	A	1		4		5			
	В	2		3		3			
	C	3		3		3			
	D	5		1		2			
Calcul	late the basic for	easible solu	ition to	the foll	owing	transportation proble	m	CO2	L
	the North West				_	= =	[10]		
	T -	XX71	11/2	11/2	XX7.4	Units Available			
Fro	To	W1	W2	W3	W4	Units Available			
F1		6	4	1	5	14			
1.1			7	1	3	17			
F2		8	9	2	7	16			
F3		4	3	6	2	5			
			40	4.5					
J	Units Required	6	10	15	4				
				I					
Part F	3 - Compulsory	(01*10=10	marks))					
Case S	Study								
Case S	-	solution fo	r the tra	nsportati	on prob	lem involving the	[10]	CO2	I
Case S	-		r the tra	nsportati	on prob	lem involving the	[10]	CO2	L
Case S	late the optimum	by:	r the tra				[10]	CO2	L
Case S	late the optimum		or the tra	nsportati S2		S3 Available	[10]	CO2	L
Case S	ring cost matrix To From	S1	r the tra	S2		S3 Available	[10]	CO2	L
Case S	ring cost matrix To From F1	S1 50	or the tra	S2	2	Available 20 1	[10]	CO2	L
Case S	To From F1	S1 50 90	or the tra	S2 50 45	2	S3 Available 20 1 70 3	[10]	CO2	L
Case S	ring cost matrix To From F1	S1 50 90 250	or the tra	S2	2	Available 20 1	[10]	CO2	L

	Course Outcomes (COs)	PO1	PO2	P03	P04	P05
CO1.	Get an insight into the fundamentals of Operations					
CO1:	Research and its definition, characteristics and phases.					
CO2:	Use appropriate quantitative techniques to get feasible and optimal solutions.	1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c,				
CO3:	Understand the usage of game theory, Queuing Theory and Simulation for Solving Business Problems.					
CO4:	Understand and apply the network diagram for project completion.					

Cognitive level	KEYWORDS
L1 -	list, define, tell, describe, recite, recall, identify, show, label, tabulate, quote, name, who, when, where, etc.
Remember	inst, define, ten, describe, recall, identity, show, laber, tabulate, quote, fiame, who, when, where, etc.
L2 -	describe, explain, paraphrase, restate, associate, contrast, summarize, differentiate interpret, discuss
Understand	describe, explain, paraphrase, restate, associate, contrast, summarize, differentiate interpret, discuss
L3 - Apply	calculate, predict, apply, solve, illustrate, use, demonstrate, determine, model, experiment, show, examine, modify
L4 - Analyze	classify, outline, break down, categorize, analyze, diagram, illustrate, infer, select
L5 - Evaluate	asses, decide, choose, rank, grade, test, measure, defend, recommend, convince, select, judge, support, conclude, argue, justify, compare, summarize, evaluate
L6 - Create	design, formulate, build, invent, create, compose, generate, derive, modify, develop, integrate

PO1–Theoretical Knowledge; PO2–Effective Communication Skills; PO3–Leadership Qualities; PO4 –Sustained Research Orientation; PO5 –Self-Sustaining Entrepreneurship

CI CCI HOD

CMR INSTITUTE OF TECHNOLOGY

Scheme of Evaluation Internal Assessment Test 2- Aug 2022

Sub: OPERATIONS RESEARCH

Max

Code:

20MBA24

Date: 27-08-22 Duration: 90mins Marks: 50

Sem:

ΙV **Branch:**

MBA

Note: Part A - Answer Any Two Full Questions (20*02=40 Marks)

Part B - Compulsory (01*10= 10marks)

Part	Que	stion #	Description	Marks Distribution	Max Marks
		a)	Definition of Optimal Cost in Transportation.	3	
	1	b)	Procedure of VAM by Transportation Cost Mentioning only the Points Explaining the points with examples.	4 3	20 M
		c)	Procedure of Assignment Cost by Hungarian Mentioning only the Points Explaining the points with examples.	4 6	
A	2	a) b) c)	Making the problem Balanced Assigning the points Calculating the values Computation of Assignment Cost. Computation of cost as per NWCM	3 2 2 2 3 5	20 M
	3	a) b)	Computation of cost as per LCM Definition of Balanced Problem in Assignment. Making the Problem to be Balanced Converting the problem from Maximizing to normal Computation of Assignment cost. Computation of cost as per NWCM Computation of cost as per LCM	5 3 2 2 3 3 3	20 M
В	4		Computation of cost as per VAM Computation of cost as per VAM Computation of cost as per MODI	5 5	10 M

CMR INSTITUTE OF TECHNOLOGY

Internal Assesment Test – II

Sub:	OPERATIONS RI	ESEARCH						Code	e: 20	OMBA2	4
Date:	27-08-2022	Duration:	90 mins	Max Marks:	50	Sem:	I	Bran	ich: N	ΙΒΑ	
				SOLUTION							
										С	BE
									Marks	СО	RBT
	Part A - Answer	Any Two F	ull Quest	ions (2* 20 =	40 mai	ks)					
1 (a)]	Definition of Optim	al cost in tra	nsportatio	on					[03]	CO1	L1
(Once an initial solu	ition is obtain	ined, the	next step is to	check	its opti	mality	. An			
(optimal solution is	one where	there is	no further se	t of tra	nsportat	ion r	outes			
	(allocations) that w	ill further re	duce the	total transport	ation co	st. Thu	s, we	have			
1	to evaluate each ur	occupied ce	ell (repres	sent unused ro	oute) in	the tran	isport	ation			
1	table in terms of an	opportunity	of reduci	ng total transp	ortation	cost.					
;	Procedure to compute Step 1: Identify the matrix and then write are called penalties.	two lowest te the absolu	costs in	each row and	column		_			CO1	L2
1	Step 2: Identify the corresponding cell's the same maximum convenience.	s min(supply	, demand). If two or m	ore colu	imns or	rows	have			
1	Step 3: If the assignment the corresponding recorresponding columns	ow. If it sat	-				_				
(Step 4: Stop the prexhausted, and dem If not, repeat the about	and at each	destination	on is 0, i.e., ev		_		-			
;	Process to compute Step 1: Subtract the Step 2: Subtract the Step 3: Use a limite Step 4: Add some m	row minima column min d number of	n. imums. Tlines to c	over all zeros.					[10]	CO2	L3
2 (a) 1	Unbalanced transpo	rtation probl	lem into a	balanced tran	sportati	on prob	lem		[03]	CO2	L2

				Destir	nation		Supply			
			1	2	3	4				
	Source	1	5	12	6	10	300			
	Sor	2	7	8	10	3	400			
		3	9	4	9	2	300			
		0	0	0	0	0	200			
		Demand	200	300	450	250				
(b)	1 - P $2 - Q$ $3 - R$	Destinatio	n					[07]	CO2	L3
(a)		Assignment (20.				[10]	CO2	I 4
(c)		ortation Cos 2 = 1030 : 820	t					[10]	CO2	L4
3 (a)	Unbala	the term Banced Assign	nment probl	em is an as	signment pr	oblem who	ere the number o	[03] of	CO2	L1
(b)	Assign	ment Cost =	13					[07]	CO2	L2
(c)	Transport NWCR LCM =	: 156	t					[10]	CO2	L2
4		B - Compul	-	0=10 marks	s)					
4		ortation Cos	t						CO2	L4
	VAM =	= 820								
	MODI	= 835								

	Course Outcomes (COs)	P01	P02	P03	P04	P05
CO1:	Gain conceptual knowledge and practical experience in understanding the HR concepts globally.					
CO2:	Comprehend and correlate the strategic approaches to HR aspects amongst PCN's, TCN's and HCN's.	1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c,				
CO3:	Develop knowledge and apply the concepts of HR in global perspective.					
CO4:	Have a better insight of HR concepts, policies and practices by critically analyzing the impact of contemporary issues globally.					

Cognitive level	KEYWORDS
L1 -	list, define, tell, describe, recite, recall, identify, show, label, tabulate, quote, name, who, when, where, etc.
Remember	
L2 -	describe, explain, paraphrase, restate, associate, contrast, summarize, differentiate interpret, discuss
Understand	
L3 - Apply	calculate, predict, apply, solve, illustrate, use, demonstrate, determine, model, experiment, show, examine, modify
L4 - Analyze	classify, outline, break down, categorize, analyze, diagram, illustrate, infer, select
L5 - Evaluate	asses, decide, choose, rank, grade, test, measure, defend, recommend, convince, select, judge, support, conclude, argue, justify, compare, summarize, evaluate
L6 - Create	design, formulate, build, invent, create, compose, generate, derive, modify, develop, integrate

PO1–Theoretical Knowledge; PO2–Effective Communication Skills; PO3–Leadership Qualities; PO4 –Sustained Research Orientation; PO5 –Self-Sustaining Entrepreneurship

CI CCI HOD