
USN								CELEBRA * CWEINSTILL ACCREEN	TUTE OF TECHNO	MR LOGY, BENGA RADE BY NA	LURU.
	T			ent Test 1-QP and			Г				
Sub:	Analysis of Ind			I I	Sub Code:	18CV52	Branch:	Civil Engg			
Date:	04.11.2022	Duration:	90 min's	Max Marks: 50	Sem / Sec:		4 A	1	MA	OB CO	E R
Question number 1 is mandatory, answer any 2 full question from Q2 to Q4.									RK S		B T
Determine the fixed end moments for the beam shown in Fig.1.a. Consider that EI is constant through (a) the span of continuous beam										CO1	L2
		25 k	N/m B	2 50 kN 50 kN 2 2 2	4 m	75 kN/m					
				Fig.1.a.							
Soln :	Fixed Mon	nents						i i			
	(\sim	25 kN/m 6 m	<u>~</u>						
	$\frac{-25\times6}{12}$	$\frac{5^2}{}$ = -751	cNm			$\frac{(6^2)^2}{(6^2)^2} = +75$	5 kNm				
		B	2	50 50	kN 2) c					

 $\frac{-2 \times 50 \times 4}{6} = -66.67 \text{ kNm}$

 $\frac{+2 \times 50 \times 4}{6} = +66.67 \text{ kNm}$

(a)
$$FEM$$
 $MFAB = -\frac{WJ}{8} = \frac{-50 \times 4}{8} = -25 \text{kn-fm}$
 $MFBA = +\frac{WJ}{8} = +25 \text{kn-fm}$
 $MFBC = -\frac{UJ^2}{12} = -\frac{15 \times 5^2}{12} = -31.25$
 $MFCB = +\frac{UJ^2}{12} = +31.25$

$$MFCD = -\frac{Wab^{2}}{J^{2}} = -\frac{80 \times 2 \times 4^{2}}{6^{2}} = -\frac{71 \cdot 11 \times N - m}{6^{2}}$$

MFDC =
$$+\frac{Wab}{J^2} = \frac{80 \times 2^2 \times 4}{6^2} = +35.56 \text{km-m}$$

(b) S.D. Equation:

$$\Theta A = \Theta D = O$$
 (: Fixed Support)
 $\delta = O$ (: No Sinking)

$$\left\{ M_{AB} = \frac{2EI}{J} \left[2\theta_A + \theta_B - \frac{3\delta}{J} \right] + M_{FAB} \right\}$$

$$M_{AB} = \frac{2EI}{4} [0+\theta_{B}-0]-2S = 0.5EI\theta_{B}-2S - (1)$$

$$M_{BA} = \frac{2EI}{4} [2\theta_{B}+0-0]+2S = EI\theta_{B}+2S - (1)$$

$$M_{CB} = \frac{2EI}{5} [2\theta_{B}+\theta_{C}-0]-3J_{1}2S$$

$$= 0.8EI\theta_{B}+0.4EI\theta_{C}-3J_{1}2S - (1)$$

$$M_{CB} = \frac{2EI}{5} [2\theta_{C}+\theta_{B}-0]+3J_{1}2S$$

$$= 0.8EI\theta_{C}+0.4EI\theta_{B}+3J_{1}2S - (1)$$

$$M_{CD} = \frac{2EI}{6} [2\theta_{C}+0-0]-7J_{1}J_{1} = 0.667EI\theta_{C}-7J_{1}J_{1} - (1)$$

$$M_{DC} = \frac{2EI}{6} [0+\theta_{C}-0]+3S_{1}S_{0} = 0.333EI\theta_{C}+3S_{0} - (1)$$

$$M_{DC} = \frac{2EI}{6} [0+\theta_{C}-0]+3S_{1}S_{0} - (1)$$

$$M_{DC} = \frac{2EI}{6}$$

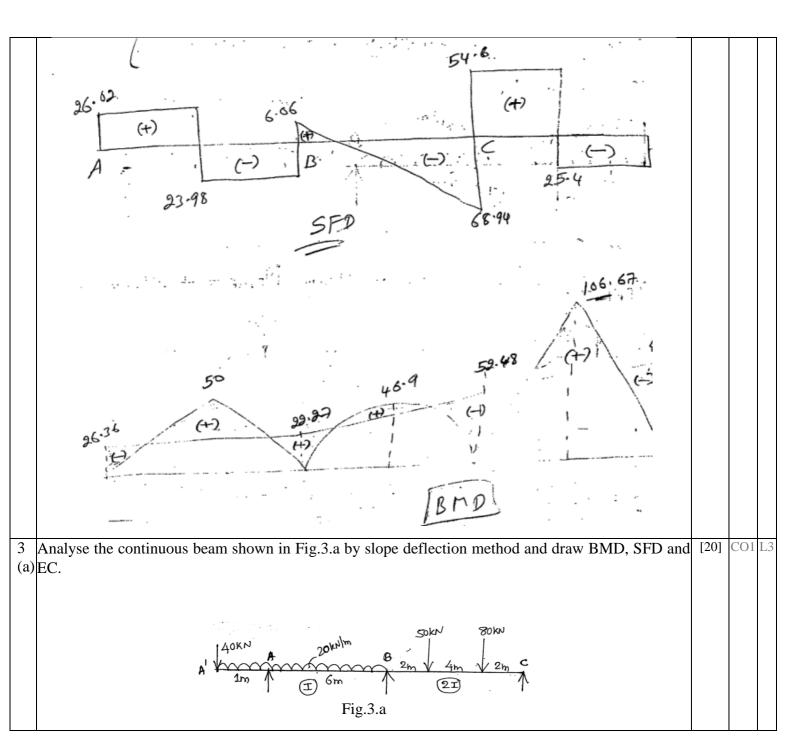
1.8 EI OB + 0.4 EI OC = 6.25
$$\rightarrow$$
 T) (2) At 'C" MCB + MCD = 0

[0.8 EI OC + 0.4 EI OB + 31.25] + [0.667EI OC - 71.1]]

=0

0.4 EI OB + 1.467 EI OC = 39.86 \rightarrow T)

Solving $OB = -2.73/EI$


Oc = +27.91/EI

(d) Final Moments [Substitute O Valuer in eqh(i) to (vi)]

Mab = -26.36 kn-m C MCB = 52.48 kn-m C

MBA = 22.27 kn-m D MCD = -52.49 kn-m C

MBC = -22.27 KN-MC MDC = 44.85 KN-M)

$$M_{FBB} = -\frac{\omega J^{2}}{12} = -\frac{20 \times 6^{2}}{12} = -60 \text{ kn-m}, M_{FBB} = +60 \text{ kn-m}$$

$$B = -\frac{\omega J^{2}}{12} = -\frac{80 \times 2 \times 6^{2}}{12} = -86.25 \text{ kn-m}$$

$$M_{FBC} = -\frac{Wab^{2}}{J^{2}} = -\frac{50 \times 2 \times 6^{2}}{8^{2}} + \frac{80 \times 6 \times 2^{2}}{8^{2}} = -86.25 \text{ kn-m}$$

$$M_{FCB} = +\frac{Wa^{2}b}{J^{2}} = +\frac{50 \times 2 \times 6}{8^{2}} + \frac{80 \times 6^{2} \times 2}{8^{2}} = +108.75 \text{ kn-m}$$

$$A^{0} = +\frac{20 \times 1}{40 \times 1} + \frac{20 \times 1 \times 1}{2} = +\frac{20 \times 1}{2} = +\frac{20 \times 1 \times 1}{2} = +\frac{20 \times 1}$$

(b) S.D. Equation
$$d=0 \text{ (No sinking)}$$

$$(M_{AB} = \frac{2ET}{1} [2\theta A + \theta B - \frac{30}{1}] + M_{FAB}$$

$$MAB = \frac{2(1\times EI)}{6} [2\theta A + \theta B - 0] - 60$$

$$= (0.667EI)\theta A + (0.333EI)\theta B + 60 - (i)$$

$$MBA = \frac{2(1\times EI)}{6} [2\theta B + \theta A - 0] + 60$$

$$= (0.667EI)\theta B + (0.333EI)\theta A + 60 - (ii)$$

$$MBC = \frac{2(2EI)}{8} [2\theta B + \theta C - 0] - 86.25$$

$$= EI\theta B + 0.5EI\theta C - 86.25 - (iii)$$

$$MCB = \frac{2(2EI)}{2\theta C} [2\theta C + \theta B - 0] + 108.75$$

$$= EI\theta C + 0.5EI\theta B + 108.75 - (iv)$$

$$MODE: - Thex is NO SiD. Equation for overhanger (c) Equilibrium Condition: -$$

(i) At "A"
$$MAA' + MAB = 0$$

 $SO = [O.667EI \Theta A + O.333EI \Theta B - 60] = 0$
 $(O.667EI)\Theta A + (O.333EI)\Theta B = 10 \rightarrow I$

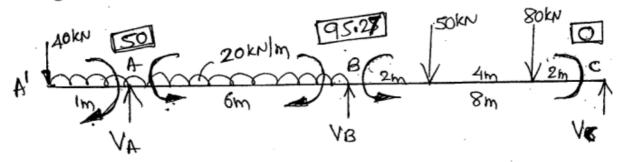
(ii) At B" [MBA + MBC = 0]

(0.333 EI)
$$\theta A + (1.667 EI) \theta B + (0.5 EI) \theta C = 26.25 \rightarrow (II)$$

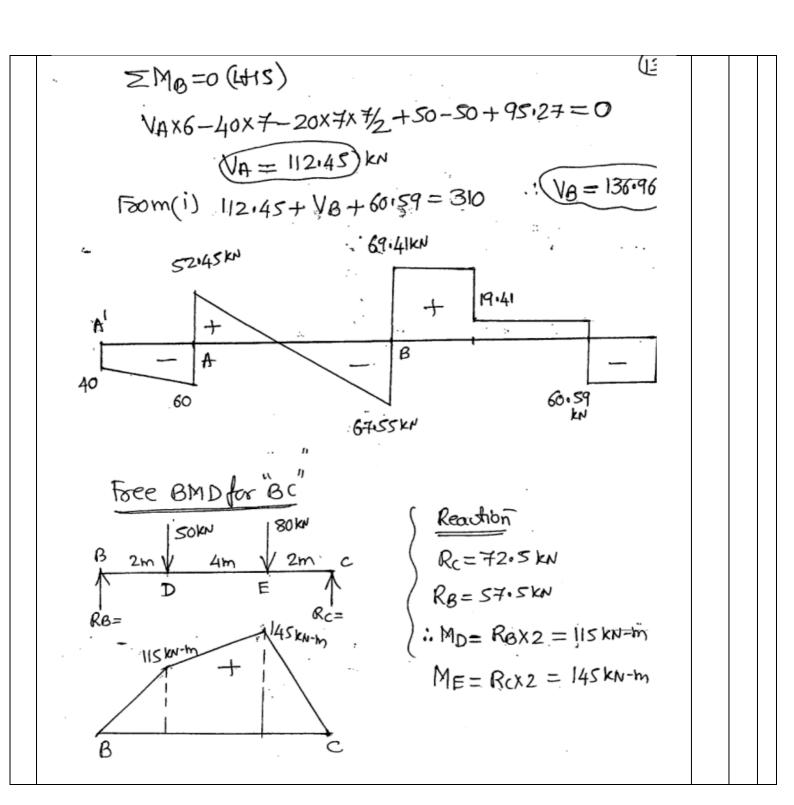
(111) A+ C" [MCB = 0] (: last Simple or Hinge or Roller support)

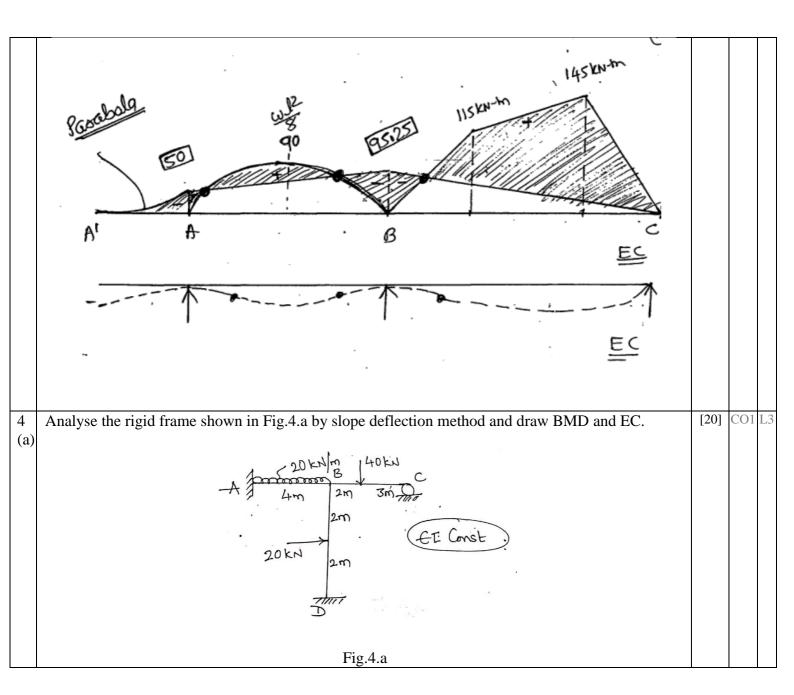
(0.5 EI) $\theta B + (1 EI) \theta C = -108.75 \rightarrow (II)$

Solving $\theta A = -15.197$
EI $\theta C = -138.98$
EI $\theta C = -138.98$
EI $\theta C = -138.98$
EI


$$M_{AB} = -SO kN-m G \qquad M_{CB} = 0$$

$$M_{BA} = 95.27 kN-m D \qquad M_{AA} = +SO kN-m D$$


$$M_{BC} = -95.27 " G \qquad M_{AB} = 0$$


$$McB = 0$$

(19

$$\Sigma V=0$$
, $VA+VB+VC=40+50+80+20X7=310$ (i)
 $\Sigma MB=0(RHS)-VCX8+SOX2+80X6-95.27=0$.
 $VC=60.59)KN$

CON (a) FEM MFAB =
$$-\frac{\omega}{12}$$
 = -26.67 , MFBA = $+26.67$

MFAB = $-\frac{\omega}{12}$ = -28.8 , MFCB = $+\frac{\omega}{12}$ = $+19.2$

D MFBC = $-\frac{\omega}{12}$ = -28.8 , MFCB = $+\frac{\omega}{12}$ = $+19.2$

D MFBD = -10

MAB = $-\frac{\omega}{12}$ = -10

MFBD = -10

MFBD = -10

MAB = $-\frac{\omega}{12}$ = -10

MAB = $-\frac{\omega}{12}$ = -10

MAB = $-\frac{\omega}{12}$ = -26.67 = -26.67 = -26.67 = -26.67 = -26.67 = -26.67 = -26.67 = -26.67 = -26.67 = -28.8 = -26.67 = -28.8 = -26.67 = -28.8 = -26.67 = -28.8 = -26.67 = -28.8 =

(c) Equillibrium (andition:

at "B"
$$MBA + MBC + MBD = 0$$

2.8 EI (BB) + 0.4 EI (BC) = -7.87 \rightarrow I

At "c" $MCB = 0$

0.4 EI (BB) + 0.8 EI (BC) = -19.2 \rightarrow II

following $BB = 0.67$
EI

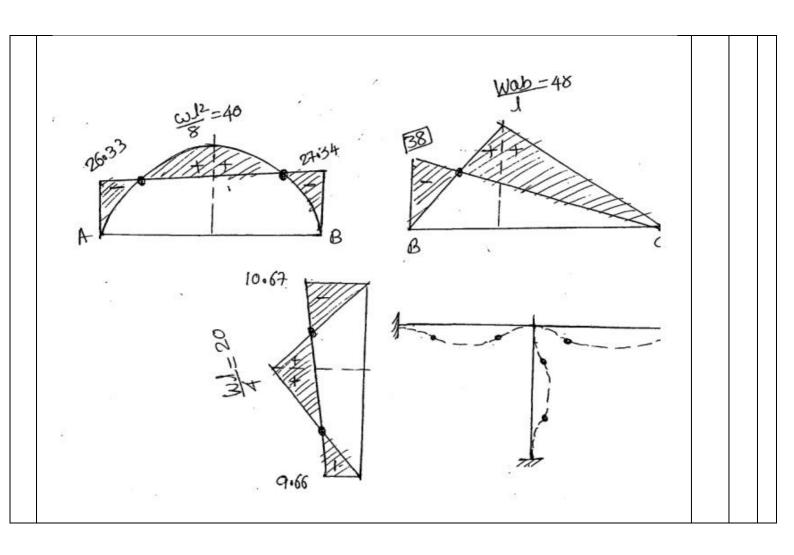
(d) Final Moment

MAB = -26.33 km·m $BBC = 0$

MBA = 27.34 km·m $BBC = 0$

MBA = 27.34 km·m $BBC = 0$

MBC = -35.00 km·m $BBC = 0$


MBC = -35.00 km·m $BBC = 0$

MBC = -366 km·m $BBC = 0$

MBC = -350.00 km·m $BBC = 0$

MBC = -350.00 km·m $BBC = 0$

MBC = -350.00 km·m $BBC = 0$

