

		* cmr in	ASTITUTE OF TECHI	CMRI NOLOGY, BENGALI	
	Internal Assessment Test 2 –QP and Solutions	400	EDITED WITH X	- GRADE DI HA	
Sub:	Analysis of Indeterminate structures Sub Code: 18CV52 Bi	anch: C	ivil En	gg	
Date:	01.12.2022 Duration: 90 min's Max Marks: 50 Sem / Sec: 4 A	A		OBE	
	Question number 1 is mandatory, answer any 2 full question from Q2 to Q4.	MARK	S C	O RE	
	Figure 1 shows a continuous beam ABCD, calculate the fixed end moments, if the end A rotates by 0.002 radians in clockwise direction and supports B and C sinks b 5mm and 2 mm respectively. Take EI=18000 kN-m ²	F101		O1 L	
	Among 8 8m C 3 km D Among 8 8m C 3 km D Among 1 m M Am				
	Fig.1.a Solution:				
	1) A June 8m (1 1 1 2m 1) 21 4m 1 41 1 1m 1 2m 1)				
	A J 4m 8m 3m. 71 MB AT C 2 6:0.005 8:-0.003 8:-0.002				
	RIED-11. 40 volumbre FEM				

[]			
= - 5x 42 + 4 (2 118000) x0.002 - 6(2x18000) (0.005) = -2.17 KN-M			
MF-13A - WIZ + DERO - GET &			
= 5x42 + 2(2x18000)x0-002 6(2x18000)(0005) = +10.			
5110-19 11.13 16N-M			
MFBC = 04 - 6EIS = -6x(4x18000)x(-0.003) = 20.25 KN-M			
MFCB = 0 - GETS = - GX(UXIPODD)X(-0,VO3) - 20.25 KAMM			
MFCD = - Wah2 - 6EIJ = - 3x1x22 - 6x18000x d-0.002) = 22.67			
Mr-Dc = warb - 6 EI & = 3x12 - 6x18000x (-0.002) = 24.67 KN-M			
	[20]	CO1	1.2
2 (a) Analyse the continuous beam shown in Fig.2.a by moment distribution method and draw BMD, SFD and EC.	[20]	COI	L3
, sokn isknim 180kn			
1 SOKN BY SM 180KN 180KN 2m 3m			
Fig.2.a			
Solution:			
GOF (C) FEM MFAB = -WI = -25 KN-m, MFBA=+25 KN-m			
MFBC= - WJ2=-3125, MFCB=+WJ2=31,25			
MFRC = $-\frac{\omega J^2}{8} = -23 \text{ km}$ MFCB = $+\frac{\omega J^2}{12} = 31.25$ MFCD = $-\frac{Wab^2}{J^2} = -38.4$			
3)			

·	1						
Joint.	Mauber	Relati	ve Stiffneri	= K .	Swn Ek	$DF = \frac{k}{\Sigma}$	
в	BA	(I/J)=	$\frac{1}{4} = 0$	25I		0.25 = 0.5	
	BC	=	I/5 = 01	20I	0.45I	0.45 = 0.4	
	CB	(T/1)=	T/s = 0.	20I		0.5	
c	CD	(T/) =	7s = 012) I	0·4I	0.5	
ا (د)	Moha	+ Dich	1 noited	able.		(38)	
A (Fixed)),	B	1700 1011	<u>c</u>	: · D	(Fixed) (38)	
AB	BA	BC	CB	CD	DC	Mauloer	
-	0.5	0.44	, 0.5	0.5		DF	
-25	25	-31.25		-57.6	38.4	FEM	
	3.5		13.18	1		Balance	
1175		6.59	1:37	1	6.59	Corryover	
4	-3.69		-0.68			Bal	
-1.84		-0.34	>-1.45	1	~0.34	. C. O	
	0.10	/		. 70	 	0-1	
0.09		0.15	<> 0.73°	0,73 ~	> 0•36	(C+0)	
0-01	-0.20	-0·16	-01037	-0:037		Bal	
-0.10		-0.018	S-0:08		-0:018	C.O .	
	0:01	0.008	0.04	0104		Bali	
25·10	12481.	-ଅଧ୍ୟ ଆ	44.40	-44.40	44.992	Final- Moments,	
C.	2	5	2	5.	2		
1 7	`				`		

(a) FEM

MFAB =
$$0 - \frac{6EIO}{12} = 0 - \frac{6(1\times2\times10^4)(0.008)}{6^2} = -26.67$$

MFBA = $0 - \frac{6EIO}{12} = 0 - \frac{6(1\times2\times10^4)(0.008)}{6^2} = -26.67$

MFBC = $-\frac{0.12}{12} = \frac{6EIO}{12} = \frac{-10\times8^2}{12} = \frac{6(1.5\times2\times10^4)(-0.005)}{8^2}$

= -39.27 kn/m

MFCB = $+\frac{0.12}{12} = \frac{6EIO}{12} = \frac{10\times8^2}{12} = \frac{6(1.5\times2\times10^4)(-0.005)}{8^2}$

= $+67.40$ kn/m

MFDC = $0 - \frac{6EIO}{12} = 0 - \frac{6(2\times2\times10^4)(-0.003)}{6^2} = +20$ kn/m

MFDC = $0 - \frac{6EIO}{12} = +20$ kn/m

BA $\frac{3}{4}(\frac{\pi}{5}) = \frac{3}{4}x \frac{\pi}{6} = 0.125I$ BC $\frac{\pi}{4} = \frac{1.51}{8} = 0.1875I$ CB $I/J = \frac{1.57}{8} = 0.1875I$

 $CD \mid \mathcal{H}_{1} = \frac{2\Gamma}{6} = 0.333I$

B.

0.4

0.6

0.36

0.64

0.31251

0.5**500**I

	· (c) M.D.T.	uble	,		E	Xed			
	AB BE	BC	CB	CD ·	DC	1			
		0.6		0164		DF			
	-26.67 -26.6		67:40		20	FEM			
	+26.67			,		Releas Co(
	O -13:33		67:40	20	20	Inigic			
	21.04		-31.46			Bal			
	_ 0 <	-15:88	15.76		-27.97	C10			
	0 4 6.35	9·53 -2·83	≥>> -5.67 4.76	~10:08 >>	-5104	Ba < • 0			
	1:13	1170	V -1171	-3.04		Bal			
	_0 ~ ,	0.51	~ ~0.30	-0.54	-1.52	Bal			
	0 4 0134	-0115	0.25		-0127	CIO.			
	0 +0106	0.09		o. 16		Bal			
	15.50	1 -15.59	49.49	-494	-14.20	Final			
								G 0.1	
4 (a)	Analyse the frame sh BMD and EC.	own in Fig	g.4.a by mome	nt distributio	n method	and draw	[20]	CO1	L3
	20kN 8 2m 3m (R8//e/k) 20kN 2m								
	Fig.4.a								
	Solution: (A) EEM MEDE = -	Wil = -	-26.67, M 28.8, MF 10, MFBI	FBA=+26 :0=+\frac{Wa}{J^2} :=+10	5:67 2 <u>4</u> 2 = + 19	9/2			

