

 CMR INSTITUTE OF TECHNOLOGY

 Affiliated to VTU, Approved by AICTE, Accredited by NBA and NAAC with “A++” Grade

 ITPL MAIN ROAD, BROOKFIELD, BENGALURU-560037, KARNATAKA, INDIA

 Department of Computer Science Engineering

Answer Scheme & Model Solution- IAT1

Sub: Database Management System Sub Code: 18CS53 Sem/Branch: V / CSE Sections: A,B,C

 MARKS CO RBT

Question 1 Define an entity and an attribute. Explain the different types

of attributes that occur in an ER model, with an example of

each with their corresponding ER notations

10 CO1 L2

Scheme Define entity with example.

Define attribute with example.

Explain types with notation and example

2
2

6

Solution Entities and Attributes

The basic object that the ER model represents is an entity, which is a thing in the real world

with an independent existence. An entity may be an object with a physical existence (for
example, a particular person, car, house, or employee) or it may be an object with a conceptual

existence (for instance, a company, a job, or a university course).

Attribute - the particular properties that describe an entity. For example, an EMPLOYEE entity
may be described by the employee’s name, age, address, salary, and job.

Several types of attributes occur in the ER model: simple versus composite, single valued

versus multi valued, and stored versus derived.
Composite versus Simple (Atomic) Attributes: Composite attributes can be divided into smaller

subparts, which represent more basic attributes with independent meanings. For example, the

Address attribute of the EMPLOYEE entity can be subdivided into Street_address, City, State,
and Zip,3 with the values ‘2311 Kirby’, ‘Houston’, ‘Texas’, and ‘77001.’ Attributes that are

not divisible are called simple or atomic attributes. Composite attributes can form a hierarchy;

for example, Street_address can be further subdivided into three simple component attributes:
Number, Street, and Apartment_number,

A composite attribute is represented in ER diagram as

Single-Valued versus Multi valued Attributes: Most attributes have a single value for a
particular entity; such attributes are called single-valued. For example, Age is a single-valued

attribute of a person. One person may not have a college degree, another person may have one,

and a third person may have two or more degrees; therefore, different people can have different
numbers of values for the College_degrees attribute. Such attributes are called multi valued. A

multi valued attribute may have lower and upper bounds to constrain the number of values

allowed for each individual entity.

A composite attribute is represented in ER diagram as

Stored versus Derived Attributes: In some cases, two (or more) attribute values are related, for

example, the Age and Birth_date attributes of a person. For a particular person entity, the value

of Age can be determined from the current (today’s) date and the value of that person’s

Birth_date. The Age attribute is hence called a derived attribute and is said to be derivable from

the Birth_date attribute, which is called a stored attribute.

A Derived attribute is represented in ER diagram as

Simple, single and stored attributes are represented in ER diagram as

Question 2 Considering the following relation for a database of the

company:

Employee(Eno, Name,Salary,DoB,Dnumber)

Department(Dnumber, Dname, MgrNo)

DeptLocation(Dnumber, Dlocation)

 Write SQL statements for:

i. Create a COMPANY database.

ii. In COMPANY database create tables as given above.

Ensure all the required constraints are enforced.

iii. Write insert statements to insert at least two rows in a

table.

10 CO3 L3

Scheme Create database statement

Create table and alter statements with proper FK declaration

Insert and update statements

1
5

4

Solution i) Create database COMPANY;

 use COMPANY;

ii)

CREATE TABLE Employee(

 Eno int PRIMARY KEY,

 Name varchar(10),

 Salary int,

 DOB date,

 Dnumber int

);

CREATE TABLE Department(

 Dnumber int PRIMARY KEY,

 Dname varchar(10),

 Mgr_No int,

 Foreign key(Mgr_No) references Employee(Eno)

);

ALTER TABLE Employee ADD FOREIGN KEY(Dnumber) REFERENCES

Department(Dnumber);

CREATE TABLE DeptLocation(

 Dnumber int,

 Dlocation varchar(10)

 PRIMARY KEY(Dnumber,Dlocation),

 Foreign key(Dnumber) references Department(Dnumber)

);

Insert into Employee(1,’A’,10000,’01-01-2000’,null);

Insert into Employee(2,’B’,20000,’11-11-2000’,null);

Insert into Department(50,’X’,1);

Insert into Department(51,’Y’,2);

Update table Employee set Dnumber=50 where Eno=1;

Update table Employee set Dnumber=51 where Eno=2;

Insert into DeptLocation(50,’Banaglore’);

Insert into DeptLocation(50,’Mysore’);

Insert into DeptLocation(51,’Banaglore’);

Question 3 Design an ER diagram for an insurance company - Assume

suitable entity types like CUSTOMER, AGENT, BRANCH,

POLICY, PAYMENT and relationships between them.

10 CO1 L3

Scheme Relevant Entities

Relevant attributes

Relevant relationships

Relevant constraints

Assumptions

2

2

2
2

2

Solution

The following are the assumptions made in this ER diagram:

• Customer name is assumed to be a composite attribute.

• A Customer must buy policies. A policy must have a customer.

• A policy must have a payment and a Payment must be associated with a policy.

• A Policy must belong to one branch and A branch will have several policies.

• An agent must work for at least one branch. A branch can have several agents but there can

exist a branch without an agent associated with it.

• An agent can register several policies. A policy can be registered by an agent.

Question 4 Discuss database system environment with its component

modules and their interactions with a neat diagram.

10 CO1 L2

Scheme Diagram

Explanation

3

7

Solution

DBMS Component Modules:

• A higher-level stored data manager module of the DBMS controls access to DBMS

information that is stored on disk.

• The DDL compiler processes schema definitions, specified in the DDL, and stores

descriptions of the schemas (meta-data) in the DBMS catalog.

• The run-time database processor handles database accesses at run time. The query

compiler handles high-level queries that are entered interactively.

• The pre-compiler extracts DML commands from an application program written in a host

programming language. These commands are sent to the DML compiler for compilation into

object code for database access.

Database System Utilities:

1. Loading - loads existing data files (e.g., text files or sequential files) into the database.

2. Backup - this utility provides a backup copy of the database, usually by dumping the entire

database onto tape.

3. File reorganization - can be used to reorganize a database file into a different file

organization to improve performance.

4. Performance monitoring - monitors database usage and provides statics to the DBA.

Question 5 Discuss how different constrains that can be enforced using

SQL DDL statements with examples.

10 CO3 L2

Scheme Not null, Default, Unique with examples

Primary key with example

foreign key with example

Check constraint with example

4

2
2

2

Solution The basic constraints that can be specified when you create a table in SQL are:

 Not Null

 Unique

 Default

 Primary Key

 Foreign Key

 Check

Not Null: By default, a column can hold NULL values. If you do not want a column to

have a NULL value, then you need to define such constraint on this column specifying

that NULL is now not allowed for that column. In the below example, the DBMS will

not allow a row which tries to insert NULL value into the Name field.

CREATE TABLE EMPLOYEE

(

SSN NUMBER(10) PRIMARY KEY,

NAME VARCHAR(10) NOT NULL

)

Unique: The UNIQUE Constraint prevents two records from having identical values in

a particular column. In the below example, the DBMS will not allow a row which tries

to insert duplicate value into the phone number field.
CREATE TABLE EMPLOYEE
(

SSN NUMBER(10) PRIMARY KEY,

NAME VARCHAR(10) NOT NULL,

PHONE NUMBER(10) UNIQUE

)

Default: The DEFAULT constraint provides a default value to a column when the

INSERT INTO statement does not provide a specific value. In the below example, the

DBMS insert 10000 as a default value into Salary field for a row if no value is specified

while inserting that row.
CREATE TABLE EMPLOYEE

(

SSN NUMBER(10) PRIMARY KEY,

NAME VARCHAR(10) NOT NULL,

PHONE NUMBER(10) UNIQUE,

SALARY NUMBER(5) DEFAULT 10000
)

Primary Key: A primary key is a single field or combination of fields that uniquely

identify a record. The fields that are part of the primary key cannot contain a NULL

value and must be Unique. Each table should have a primary key, and each table can

have only ONE primary key. In the below example, SSN is a primary key, hence it must

be unique and not take null value and the table Employee cannot have any other

attribute as primary key as it already has SSN has PK.
CREATE TABLE EMPLOYEE

(

SSN NUMBER(10) PRIMARY KEY,

NAME VARCHAR(10) NOT NULL,

PHONE NUMBER(10) UNIQUE,

SALARY NUMBER(5) DEFAULT 10000

)

Foreign Key: A foreign key is a key used to link two tables together. Foreign Key is a

column or a combination of columns whose values match a Primary Key of another

table (parent table/referred table). The relationship between 2 rows of two tables

matches the Primary Key in one of the parent table with a Foreign Key value of the

referenced table. In the below table, DEPTNO is a foreign key referencing to DNO of

Department table. The DEPTNO attribute can take value which is present in DNO of

department table or NULL value.
CREATE TABLE EMPLOYEE

(
SSN NUMBER(10) PRIMARY KEY,

NAME VARCHAR(10) NOT NULL,

PHONE NUMBER(10) UNIQUE,

SALARY NUMBER(5) DEFAULT 10000
DEPTNO NUMBER(2) REFERENCES DEPARTMENT(DNO)

)

Check Constraint: Check constraint is used to enforce a condition on an attribute in a

table. A record is inserted only if the check constraint is satisfied. If the constraint is not

satisfied, the record insertion will be rejected.
CREATE TABLE EMPLOYEE

(

SSN NUMBER(10) PRIMARY KEY,

NAME VARCHAR(10) NOT NULL,

PHONE NUMBER(10) UNIQUE,

AGE NUMBER(2) CHECK AGE>16,

SALARY NUMBER(5) DEFAULT 10000,

DEPTNO NUMBER(2) REFERENCES DEPARTMENT(DNO)

)

Question 6a Explain structural constraints of a relationship-type with

examples

5 CO1 L2

Scheme Cardinality ratio with example

Participation with example

2.5
2.5

Solution Cardinality ratio and participation constraints, taken together are the structural constraints of a
relationship type.

The cardinality ratio for a binary relationship specifies the maximum number of relationship

instances that an entity can participate in.

For example, consider a binary relationship type WORKS_FOR between Department and
Employee entity types, DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that

each department can be related to numerous employees, but an employee can be related to

(work for) only one department.
The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and M:N.

Cardinality ratio 1:N of a relationship R between E1 & E2 entities is given as below in ER

diagrams.

The binary relationship MANAGES which relates a department entity to the employee who

manages that department; the cardinality ratio is 1:1. This represents the constraint that an

employee can manage only one department and that a department has only one manager.
The relationship type WORKS_ON between Employee entity and the Project entity that he

works for, is of cardinality ratio M:N, representing that an employee can work on several

projects and a project can have several employees.
The participation constraint specifies whether the existence of an entity depends on its being

related to another entity via the relationship type. There are two types of participation

constraints—total and partial.

If a company policy states that every employee must work for a department, then an employee
entity can exist only if it participates in a WORKS_FOR relationship instance. Thus, the

participation of EMPLOYEE in WORKS_FOR is called total participation, meaning that every

entity in "the total set" of employee entities must be related to a department entity via
WORKS_FOR. Total participation is also called existence dependency.

On the other hand, we do not expect every employee to manage a department, so the

participation of EMPLOYEE in the MANAGES relationship type is partial, meaning that some
or "part of the set of" employee entities are related to a department entity via MANAGES, but

not necessarily all.

In a relationship R, where participation of entity E1 is partial & participation of E2 is total, is

represented in ER diagram as below,

Question 6b Explain three schema architecture with a neat diagram. 10 CO1 L2

Scheme Diagram

Explanation

2

3

Solution

The three-schema architecture is a convenient tool with which the user can visualize the schema
levels in a database system. The goal of the three-schema architecture, is to separate the user

applications from the physical database. In this architecture, schemas can be defined at the

following three levels:
a) Internal Level: The internal level has an internal schema, which describes the physical

storage structure of the database. The internal schema uses a physical data model and describes

the complete details of data storage and access paths for the database.

b) Conceptual level: The conceptual level has a conceptual schema, which describes the
structure of the whole database for a community of users. The conceptual schema hides the

details of physical storage structures and concentrates on describing entities, data types,

relationships, user operations, and constraints. Usually, a representational data model is used to
describe the conceptual schema when a database system is implemented. This implementation

conceptual schema is often based on a conceptual schema design in a high-level data model.

c) External or view level: The external or view level includes a number of external schemas or
user views. Each external schema describes the part of the database that a particular user group is

interested in and hides the rest of the database from that user group. As in the previous level,

each external schema is typically implemented using a representational data model, possibly

based on an external schema design in a high-level data model.
Mapping: The three schemas are only descriptions of data; the stored data that actually exists is

at the physical level only. In a DBMS based on the three-schema architecture, each user group

refers to its own external schema. Hence, the DBMS must transform a request specified on an
external schema into a request against the conceptual schema, and then into a request on the

internal schema for processing over the stored database. If the request is database retrieval, the

data extracted from the stored database must be reformatted to match the user’s external view.
The processes of transforming requests and results between levels are called mappings.

