

#### Internal Assessment Test 1 – Nov 2022

| Sub: Automata Theory and Computability |           |           | Sub<br>Code: | 18CS54     | Branch: | CS            | Е   |       |  |   |    |
|----------------------------------------|-----------|-----------|--------------|------------|---------|---------------|-----|-------|--|---|----|
| Date:                                  | 5/11/2022 | Duration: | 90 mins      | Max Marks: | 50      | Sem /<br>Sec: | 5 / | A,B,C |  | 0 | BE |
| Answer any FIVE FULL Questions MARKS   |           |           |              |            | CO      | RBT           |     |       |  |   |    |
|                                        |           |           |              |            |         |               |     |       |  |   |    |

## 1 Define the following with examples:

[04] CO1 L1

[06] CO1 L3

### (a) i) Alphabet ii) Language

Alphabet denoted by  $\Sigma$  is a finite set. The members of  $\Sigma$  are called symbols or characters.

Eg. English Alphabet  $\Sigma = \{a, b, c,...,z\}$ 

Binary Alphabet  $\Sigma = \{0,1\}$ 

Alphabet of digits  $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$ 

Language: A language (finite/infinite) is a set of strings over a given alphabet,  $\Sigma$ . If there is more than one language, we will use  $\Sigma L$  to denote alphabets from which language L is formed.

Eg.

$$L = \{w | \in \{0,1\} *$$

:w begins and ends in a and  $|w| \ge 2$ 

Strings that belong to this language in lexicographic order are {aa,aaa, aba, aaaa, abaa, aaba,...}

(b) Design a DFSM for  $\{w \in \{c,d\}^*: w \text{ begins with ccd}\}$ . Write the definition. Show computation for w = ccddc and w = cdc and state whether it is an accepting or rejecting configuration.



# Definition

$$M = (K, \Sigma, \delta, s, A)$$

$$\mathbf{M} = (\{q_0, q_1, q_2, q_3, q_4\}, \{c, d\}, \delta, q_0, \{q_3\})$$

**Transition Table** 

| Transition rabic  |       |       |  |  |
|-------------------|-------|-------|--|--|
| δ                 | c     | d     |  |  |
| $\rightarrow q_0$ | $q_1$ | $q_4$ |  |  |
| $q_1$             | $q_2$ | $q_4$ |  |  |
| $q_2$             | $q_4$ | $q_3$ |  |  |
| * q <sub>3</sub>  | $q_3$ | $q_3$ |  |  |

Computation

$$(q_0, ccddc) \vdash (q_1, cddc) \vdash (q_2, ddc)$$
$$\vdash (q_3, dc) \vdash (q_3, c) \vdash (q_3, \varepsilon)$$

 $(q_0, ccddc) *$ 

 $\vdash (q_3, \varepsilon)$  is an accepting configuration as  $q_3 \in A$  of DFSM M

$$(q_0, cdc) \vdash (q_1, dc) \vdash (q_4, c) \vdash (q_4, \varepsilon)$$

2 Define the following with examples:

04] CO1 L1

[06] CO1 L3

(a) i) String ii)Power of an alphabet

String: A finite Sequence, possibly empty, of symbols drawn from some alphabet  $\Sigma$ . Given any alphabet, the shortest string is  $\varepsilon$ .  $\Sigma^*$  is the set of all possible strings over an alphabet  $\Sigma$ .

Example:

English Alphabet {a, b, c,...,z} Strings : {sat, laugh, happy}

Binary Alphabet {0,1} Strings: {011, 111, 1000, 0110}

ii) Power of an alphabet

the set of all strings can be expressed as a certain length from that alphabet by using exponential notation. The power of an alphabet is denoted by  $\Sigma^k$  and is the set of strings of length k.

- $\bullet \quad \Sigma = \{0,1\}$
- $\Sigma 1 = \{0,1\} (21=2)$
- $\Sigma 2 = \{00,01,10,11\} (22=4)$
- $\Sigma 3 = \{000,001,010,011,100,101,110,111\} (23 = 8)$

The set of strings over an alphabet  $\Sigma$  is usually denoted by  $\Sigma^*$  (Kleene closure)

For instance,  $\Sigma^* = \{0,1\}^*$ 

 $=\{ \epsilon,0,1,00,01,10,11,\ldots \}$ 

(b) Design a DFSM for  $\{w \in \{a,b\}^*: \#_a \mod 5 = 0\}$ . (Number of a's is divisible by 5) Write the definition. Show computation for w = aabaaa and w = abab and state whether it is an accepting or rejecting configuration.



Definition

$$M = (K, \Sigma, \delta, s, A)$$

$$\mathbf{M} = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \delta, q_0, \{q_0\})$$

**Transition Table** 

| Transition radic                    |       |       |  |
|-------------------------------------|-------|-------|--|
| δ                                   | a     | b     |  |
| $\stackrel{*}{\longrightarrow} q_0$ | $q_1$ | $q_0$ |  |
| $q_1$                               | $q_2$ | $q_1$ |  |

Computation

$$(q_0, aabaaa) \vdash (q_1, abaaa) \vdash (q_2, baaa)$$
  
 $\vdash (q_2, aaa) \vdash (q_3, aa) \vdash (q_4, a) \vdash (q_0, \varepsilon)$ 

 $(q_0, aabaaa) *$ 

 $\vdash$   $(q_0, \varepsilon)$  is an accepting configuration as  $q_a$  A of DFSM M

$$(q_0, abab) \vdash (q_1, bab) \vdash (q_1, ab) \vdash (q_2, b) \vdash (q_2, \varepsilon)$$

| $q_2$ | $q_3$ | $q_2$ |
|-------|-------|-------|
| $q_3$ | $q_4$ | $q_3$ |
| $q_4$ | $q_0$ | $q_4$ |

$$(q_0, abab) *\vdash (q_2, \varepsilon)$$
 is a rejecting configuration as  $q_4 \notin A$  of DFSM  $M$ 

3 Define Moore machine. Design Moore machine to output Y when there is a sequence  $010 \Sigma = [05]$  CO1 L2 (a)  $\{0,1\}$ 

A Moore machine M is a seven-tuple  $(K, \Sigma, O, \delta, D, s, A)$  where:

- K is a finite set of states,
- • $\Sigma$  is an input alphabet,
- O is an output alphabet,
- $s \in K$  is the start state,
- $A \subseteq K$  is the set of accepting states (although for some applications this designation is not important),
- $\delta$  is the transition function. It is function from  $(K \times \Sigma)to(K)$  and
- D is the display or output function. It is a function from (K) to (O\*).

  A Moore machine M computes a function f(w) iff, when it reads the input string w, its output sequence is f(w).



 $\mathbf{M} = (\{q_0, q_1, q_2, q_3\}, \{0,1\}, \{Y, N\}, \delta, q_0, \{q_0\}, \{q_3\})$ 

| δ                         | 0     | 1     |
|---------------------------|-------|-------|
| $* \longrightarrow q_0/N$ | $q_1$ | $q_0$ |
| $q_1/N$                   | $q_1$ | $q_2$ |
| $q_2/N$                   | $q_3$ | $q_0$ |
| $q_3/Y$                   | $q_3$ | $q_3$ |

Design DFSM to  $\{w \in \{0,1\}^*: w \text{ contains even number of 0s and odd number of 1s}\}.$ 

(b) Definition

$$M = (K, \Sigma, \delta, s, A)$$

$$\mathbf{M}{=}\left(\{q_{0},q_{1},q_{2},q_{3}\},\{0,1\},\delta,q_{0},\{q_{2}\}\right)$$

[05] CO1 L3



- q0 even number of 0s, even number of 1s
- q1 odd number of 0s, even number of 1s
- q2 even number of 0s, odd number of 1s
- q3 odd number of 0s, odd number of 1s

| δ                 | 0     | 1     |
|-------------------|-------|-------|
| $\rightarrow q_0$ | $q_1$ | $q_2$ |
| $q_1$             | $q_0$ | $q_3$ |
| * q <sub>2</sub>  | $q_3$ | $q_0$ |
| $q_3$             | $q_2$ | $q_1$ |

$$(q_0,010) \vdash (q_1,10) \vdash (q_3,0) \vdash (q_2,\varepsilon) \\ (q_0,010) *\vdash (q_2,\varepsilon) \text{ is a accepting configuration as } q_2 \in A \text{ of DFSM M}$$

$$(q_0,00) \vdash (q_1,0) \vdash (q_0,\varepsilon) \\ (q_0,00) *\vdash (q_0,\varepsilon) \text{ is a rejecting configuration as } q_0 \not\in A \text{ of DFSM M}$$

#### 4 Write difference between NDFSM and DFSM

(a)

| DFSM                                           | NDFSM                                                             |
|------------------------------------------------|-------------------------------------------------------------------|
| Uses a transition function, $\delta$ that maps | Uses a transition relation Δ which is a                           |
| a state to another state based on the          | finite subset of $(k \times (\Sigma \cup \{\epsilon\})) \times k$ |
| input symbol read.                             |                                                                   |
| maps k x input symbol to k                     |                                                                   |
| Where k is a state                             |                                                                   |
| On each input symbol there is exactly          | There may or may not be a transition                              |
| one transition                                 | on a input symbol. There may be more                              |
|                                                | than one transition on an input symbol                            |
|                                                | (competing moves)                                                 |
| There is only one configuration for an         | There may be more than one                                        |
| input string                                   | configuration for an input string                                 |
| After reading a string, if the final state     | After reading a string, if one of the                             |
| is an accepting state, then the string is      | states in the final configuration is                              |
| accepted                                       | accepting state, the string is accepted                           |
|                                                | by the machine                                                    |
| Difficult to construct                         | Easy to construct                                                 |
| Behaves deterministically                      | Guesses the next step                                             |

[05] CO1 L2

 $\epsilon$  - transitions are not allowed

ε- transitions are allowed

[05] CO1 L3

(b) Design an NDFSM for  $\{w \in \{a,b\}^*: w \text{ ends with abba or } w \text{ ends with bab}\}$ . Write the definition. Show computation for w = babba and w = abab and state whether it is an accepting or rejecting configuration.



 $\mathbf{M} = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9\}, \{a, b\}, \Delta, q_0, \{q_5, q_9\})$ 

| Δ                 | eps(q) | a             | b              |
|-------------------|--------|---------------|----------------|
| $\rightarrow q_0$ |        | _             | _              |
| $q_1$             |        | $\{q_1,q_2\}$ | $\{q_1\}$      |
| $q_2$             |        | _             | $q_3$          |
| $q_3$             |        | _             | $q_4$          |
| $q_4$             |        | $q_5$         | _              |
| $q_5$             |        | _             | _              |
| $q_6$             |        | $q_6$         | $\{q_6, q_7\}$ |
| $q_7$             |        | $q_8$         | _              |
| $q_8$             |        | _             | $q_9$          |
| $q_9$             |        | _             | _              |

# Computation



 $(q_0, babba) \mapsto (q_5, \varepsilon)$  is an accepting configuration and hence abba is accepted by NDFSM M/

 $(\{q_0, q_1, q_6\}, \mathbf{b}abba) \vdash (\{q_1, q_6, q_7\}, \mathbf{a}bba) \vdash (\{q_1, q_2, q_6, q_8\}, \mathbf{b}ba) \vdash (\{q_1, q_3, q_6, q_7, q_9\}, \mathbf{b}a) \vdash (\{q_1, q_4, q_6, q_7\}, \mathbf{a}) \vdash (\{q_1, q_2, q_5, q_6, q_8\}, \varepsilon).$  Since  $q_5$  is an accepting state the computation is accepting



 $(q_0, abab) \vdash * (q_9, \varepsilon)$  is an accepting configuration as  $q_9 \in A$  and hence bab is accepted by NDFSM M  $(\{q_0,q_1,q_6\}, \boldsymbol{a}bab) \vdash (\{q_1,q_2,q_6\}, \boldsymbol{b}ab) \vdash (\{q_1,q_3,q_6,q_7\}, \boldsymbol{a}b) \vdash$  $(\{q_1,q_2,q_6,q_8\}, \pmb{b}) \vdash (\{q_1,q_3,q_6,q_7,q_9\}, \varepsilon)$  . Since q<sub>9</sub> is an accepting state, the computation is accepting

- Write the procedure for eps(q)
- (a) eps(q) or  $\varepsilon$ -closure are the set of states reachable from q following 0 or more  $\varepsilon$ -transitions.

 $eps(q) = \{ p \in k: (q,w) | -*(p,w) \}$ 

where eps(q) is the closure of  $\{q\}$  under the relation  $\{(p,r)$ : there is a transition  $(p, \varepsilon, r) \in \Delta$ 

eps(q:state)=

- 1.  $result = \{q\}$
- 2. While there exists some peresult and qeresult, and some transition,  $(p, \varepsilon, r) \in \Delta$  do: Insert r into result.
- 3. Return result

Convert the following NDFSM to an equivalent DFSM and write its definition. Show steps. $\Sigma$  [07] CO2 L3

[03] CO2 L2

(b) =  $\{a,b,c\}$ ,  $\lambda$  represents  $\epsilon$ -transitions



| $\longrightarrow p$ | - | q | r     | {p,q,r} |
|---------------------|---|---|-------|---------|
| q                   | p | r | {p,q} | _       |
| *r                  | - | - | -     | {r}     |

#### NdfsmToDFSM

| active_states             | a                      | b                                    | c                                                      |
|---------------------------|------------------------|--------------------------------------|--------------------------------------------------------|
| $\rightarrow * \{p,q,r\}$ | $eps(p) = \{p, q, r\}$ | $eps(q) \cup eps(r)$<br>= $\{q, r\}$ | $eps(r) \cup eps(p)$<br>$\cup eps(q)$<br>$= \{p,q,r\}$ |
| * {q, r}                  | $eps(p) = \{p, q, r\}$ | $eps(r) = \{r\}$                     | $eps(r) \cup eps(p)$<br>$\cup eps(q)$<br>$= \{p,q,r\}$ |
| * {r}                     | Ø                      | Ø                                    | Ø                                                      |
| Ø                         | Ø                      | Ø                                    | Ø                                                      |

CO2 L2

CO2 L3

[05]

[05]

6 (a) Write procedure for NDFSM to DFSM.

ndfsmtodfsm(M: NDFSM) =

1. For each state q in K do:

Compute eps(q).

- 2. s' = eps(s)
- 3. Compute  $\delta'$ :
- 3.1. active-states =  $\{s'\}$ .
- 3.2.  $\delta' = \phi$
- 3.3. While there exists some element Q of *active-states* for which  $\delta'$  has not yet been computed do:

For each character c in  $\Sigma$  do:

new- $state = \phi$ .

For each state q in Q do:

For each state p such that  $(q, c, p) \in \Delta$  do:

new-state = new- $state \cup eps(p)$ .

Add the transition (Q, c, new-state) to  $\delta'$ 

If *new-state*  $\notin$  *active-states* then insert it into *active-states*.

- 4. K' = active-states.
- $5. A' = \{Q \in K' : Q \cap A \neq \Phi\}$
- (b) Convert the following NDFSM to an equivalent DFSM and write it's definition.  $\Sigma = \{0,1\}$ . (Note that it is not required to calculate eps(q) as there are no  $\varepsilon$ -transitions)



| Δ                 | 0             | 1                 |
|-------------------|---------------|-------------------|
| $\rightarrow q_0$ | $\{q_0,q_1\}$ | {q <sub>1</sub> } |
| $*q_1$            | $q_2$         | $q_1$             |
| $q_2$             | -             | $q_2$             |

#### ndfsmToDfsm simulate

| active_states      | 0                   | 1                 |
|--------------------|---------------------|-------------------|
| $\rightarrow q_0$  | $\{q_0, q_1\}$      | $\{q_1\}$         |
| $*{q_0,q_1}$       | $\{q_0,q_1,q_2\}$   | $\{q_0,q_1\}$     |
| $*\{q_1\}$         | $\{q_2\}$           | $\{q_2\}$         |
| $*{q_0, q_1, q_2}$ | $\{q_0, q_1, q_2\}$ | $\{q_1, q_2\}$    |
| $\{q_2\}$          | Ø                   | {q <sub>2</sub> } |
| $*\{q_1, q_2\}$    | $\{q_2\}$           | $\{q_2\}$         |
| Ø                  | Ø                   | Ø                 |

$$\delta(\{q_0, q_1\}, 0) = \delta(q_0, 0) \cup \\ \delta(q_1, 0) = \{q_0, q_1\} \cup \\ \{q_2\} = \{q_0, q_1, q_2\}$$

#### The DFSM M'

| 1110 21 21/11/1      |   |   |
|----------------------|---|---|
| $oldsymbol{\delta}'$ | 0 | 1 |
| $\longrightarrow A$  | В | С |
| *B                   | D | В |
| * C                  | Е | E |
| * D                  | D | F |
| E                    | G | E |
| *F                   | Е | E |
| G                    | G | G |

$$M' = (K', \Sigma, \delta', s', A')$$
  
$$M' = (\{A, B, C, D, E, F, G\}, \{0,1\}, \delta', A, \{B, C, D, F\})$$

7 (a) Define Mealy machine. Design a Mealy machine to find 2s complement of a binary number. Show the output string for the input 11100

[05]

CO 1 L1

A Mealy machine M is a six-tuple  $(K, \Sigma, O, \delta, s, A)$  where:

- K is a finite set of states,
- • $\Sigma$  is an input alphabet,
- O is an output alphabet,
- $s \in K$  is the start state,
- • $A \subseteq K$  is the set of accepting states, and
- • $\delta$  is the transition function. It is function from  $(K \times \Sigma)to(K \times O^*)$

A Mealy machine M computes a function f(w) iff, when it reads the input string w, its output sequence is f(w).

 $\mathbf{M} = (\{q_0, q_1\}, \{0,1\}, \{0,1\}, \delta, q_0, \{q_0\})$ 

| δ                       | 0         | 1       |
|-------------------------|-----------|---------|
| $* \longrightarrow q_0$ | $q_{0}/0$ | $q_1/0$ |
| $q_1$                   | $q_1/1$   | $q_1/1$ |

Output string for 11100 -

11100

Starting from LSB -00100

(b) Design a DFSM which will accept decimal numbers divisible by 4. Show the acceptanc eof the input 1124.

| δ                | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|------------------|----|----|----|----|----|----|----|----|----|----|
| *                | Q0 | Q1 | Q2 | Q3 | Q0 | Q1 | Q2 | Q3 | Q0 | Q1 |
| $\rightarrow$ Q0 |    |    |    |    |    |    |    |    |    |    |
| Q1               | Q2 | Q3 | Q0 | Q1 | Q2 | Q3 | Q0 | Q1 | Q2 | Q3 |
| Q2               | Q0 | Q1 | Q2 | Q3 | Q0 | Q1 | Q2 | Q3 | Q0 | Q1 |
| Q3               | Q2 | Q3 | Q0 | Q1 | Q2 | Q3 | Q0 | Q1 | Q2 | Q3 |

$$\delta(q0,1)=q1$$

$$\delta(q0,11) = \delta(q1,1) = q3$$

$$\delta(q0, 112) = \delta(q3, 2) = q0$$
  
 $\delta(q0, 1124) = \delta(q0, 4) = q0$ 

#### It is accepted.

Q8 option available only for Section A&C

8 (a) What is meant by indistinguishable states, i.e. when q≡p. What is meant by distinguishable states?

 $\equiv p$  are indistiguishable iff for all strings  $w \in \Sigma *$  either w drives M to an accepting state from both q and p or it drives M to a rejecting state from both q and p. q and p are distinguishable if for all strings,  $w \in \Sigma *$  w drives M to an accepting state from q and a non-accepting state from p or vice versa.

(b) Minimize the following DFSM:

[07]

[03]

[05]

CO 1 L2

CO2 L2

CO2 L3



First, we divide into accepting and non accepting classes. Classes = [0,2], [1,3,4,5]

| [0,2] | a         | b         |                                             |
|-------|-----------|-----------|---------------------------------------------|
| [0]   | [1,3,4,5] | [1,3,4,5] | No splitting required as both 0 and 2 drive |
| [2]   | [1,3,4,5] | [1,3,4,5] | a and b to the same non-accepting class     |

| [1,3,4,5] | a         | b         |                                   |
|-----------|-----------|-----------|-----------------------------------|
| [1]       | [0,2]     | [1,3,4,5] | Splitting required, [1],[3,5],[4] |
| [3]       | [1,3,4,5] | [0,2]     |                                   |
| [4]       | [1,3,4,5] | [1,3,4,5] |                                   |
| [5]       | [1,3,4,5] | [0,2]     |                                   |

Classes = [0,2],[1],[3,5],[4]

| [0,2] | а   | b     |                                                                             |  |
|-------|-----|-------|-----------------------------------------------------------------------------|--|
| [0]   | [1] | [3,5] | No splitting required as both 0 and 2 drivea to non-accepting class [1] and |  |
| [2]   | [1] | [3,5] | b to non-accepting class [3,5]                                              |  |

| [3,5] | а   | b     |                                         |
|-------|-----|-------|-----------------------------------------|
| [3]   | [4] | [0,2] | No splitting required as both 3 and 5   |
|       |     |       | drivea to non-accepting class [4] and b |
| [5]   | [4] | [0,2] | to accepting class [0,2]                |
|       |     |       |                                         |

Classes = [0,2],[1],[3,5],[4]

The definition of the DFSM is as follows.

M' = 
$$(k', \Sigma, \delta, s', A')$$
 where  
K'=  $\{[0,2], [1], [3,5], [4]\}$   
 $\Sigma = \{a,b\}$   
 $\delta = \{(([0,2], a), [1]), (([0,2], b), [3,5]),$   
 $(([1], a), [0,2]), (([1], b), [4]),$   
 $(([3,5], a), [4]), (([3,5], b), [0,2]),$   
 $(([4], a), [3,5]), (([4], b), [1])$   
 $\}$   
s'= $[0,2]$ 

| Tran        | nsition T | able  |
|-------------|-----------|-------|
| $\delta$ M' | a         | b     |
| →*[0,2]     | [1]       | [3,5] |
| [1]         | [0,2]     | [4]   |
| [3,5]       | [4]       | [0,2] |
| [4]         | [3,5]     | [1]   |





# **CO PO Mapping**

|     | Course Outcomes                                                                                                                                                                              | Modules       | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | PO10 | P011 | P012 | PS01 | PS02 | PS03 | PS04 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
| CO1 | Acquire fundamental understanding of the core concepts in automata theory and Theory of Computation                                                                                          | 1,2,3,4<br>,5 | 2   | 3   | -   | -   | -   | 2   | -   | -   | -   | -    | -    | -    | -    | 3    |      | 3    |
| CO2 | Learn how to translate between different models of Computation (e.g., Deterministic and Non-deterministic and Software models).                                                              | 1,2           | 2   | 3   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | -    | -    | 3    | 3    | 3    |
| CO3 | Design Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their relative powers. | 2,3           | 2   | 3   | 2   | 2   | 2   | 2   | -   | -   | -   | -    | -    | -    | 2    | -    | 3    | -    |
| CO4 | Develop skills in formal reasoning and reduction of a problem to a formal                                                                                                                    | 3,4           | 2   | 3   | 2   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    | 2    | 2    | 3    | 3    |

|     | model, with an emphasis on semantic precision and conciseness.     |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|-----|--------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO5 | Classify a problem with respect to different models of Computation | 5 | 2 | 3 | 2 | 2 | - | 3 | - | - | - | - | - | - | 3 | 3 | 3 | 3 |

| COGNITIVE<br>LEVEL | REVISED BLOOMS TAXONOMY KEYWORDS                                                                                                              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| L1                 | List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.                          |
| L2                 | summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend                           |
| L3                 | Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.            |
| L4                 | Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.                                       |
| L5                 | Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize. |

| PF   | ROGRAM OUTCOMES (PO), PRO                  | CORRELATION<br>LEVELS |                                       |        |                      |  |
|------|--------------------------------------------|-----------------------|---------------------------------------|--------|----------------------|--|
| PO1  | Engineering knowledge                      | PO7                   | Environment and sustainability        | 0      | No Correlation       |  |
| PO2  | Problem analysis                           | PO8                   | Ethics                                | 1      | Slight/Low           |  |
| PO3  | Design/development of solutions            | PO9                   | Individual and team work              | 2      | Moderate/<br>Medium  |  |
| PO4  | Conduct investigations of complex problems | PO10                  | Communication                         | 3      | Substantial/<br>High |  |
| PO5  | Modern tool usage                          | PO11                  | Project management and finance        |        |                      |  |
| PO6  | The Engineer and society                   | PO12                  | Life-long learning                    |        |                      |  |
| PSO1 | Develop applications using differe         | nt stacks             | s of web and programming technologies | es     |                      |  |
| PSO2 | Design and develop secure, paralle         | el, distri            | buted, networked, and digital systems |        |                      |  |
| PSO3 | Apply software engineering method          | ds to de              | sign, develop, test and manage softwa | re sys | stems.               |  |
| PSO4 | Develop intelligent applications for       | or busine             | ess and industry                      |        |                      |  |