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1 

(a) 

Define the following with examples : 

i) Alphabet  ii) Language 

Alphabet denoted by Σ is a finite set. The members of Σ are called symbols 

or characters. 

Eg. English Alphabet Σ= {a, b, c,...,z} 

Binary Alphabet Σ= {0,1} 

Alphabet of digits Σ = {0,1,2,3,4,5,6,7,8,9} 

 

Language: A language (finite/infinite) is a set of strings over a given alphabet, Σ. If 

there is more than one language, we will use ΣL to denote alphabets from which 

language L is formed. 

Eg. 

L = {w|∈{0,1}* 

 

:w begins and ends in a and |w| >=2} 

 

Strings that belong to this language in lexicographic order are {aa,aaa, aba, aaaa, 

abaa, aaba,...} 

[04] CO1 L1 

   

(b) 
Design a DFSM for {w∈{c,d}*: w begins with ccd}. Write the definition. Show computation 

for w = ccddc and w=cdc and state whether it is an accepting or rejecting configuration. 

 
Definition 

M= (𝐾, Σ, δ, s, A) 

M= ({𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4}, {𝑐, 𝑑}, 𝛿, 𝑞0, {𝑞3}) 

Transition Table 

𝜹 c d 

⟶ 𝑞0 𝑞1 𝑞4 

𝑞1 𝑞2 𝑞4 

𝑞2 𝑞4 𝑞3 

∗ 𝑞3 𝑞3 𝑞3 

Computation 

(𝑞0, 𝑐𝑐𝑑𝑑𝑐) ⊢ (𝑞1, 𝑐𝑑𝑑𝑐)  ⊢ (𝑞2, 𝑑𝑑𝑐) 

⊢ (𝑞3, 𝑑𝑐) ⊢ (𝑞3, 𝑐) ⊢ (𝑞3, 𝜀) 
(𝑞0, 𝑐𝑐𝑑𝑑𝑐) ∗
⊢ (𝑞3, 𝜀) 𝑖𝑠 𝑎𝑛 𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑞3

∈ 𝐴 𝑜𝑓 𝐷𝐹𝑆𝑀 𝑀 

 

(𝑞0, 𝑐𝑑𝑐) ⊢ (𝑞1, 𝑑𝑐) ⊢  (𝑞4, 𝑐) ⊢  (𝑞4, 𝜀) 

[06] CO1 L3 

 

 



 

𝑞4 𝑞4 𝑞4 
 

 

(𝑞0, 𝑐𝑑𝑐) ∗
⊢ (𝑞4, 𝜀) 𝑖𝑠 𝑎 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑞4

∉ 𝐴 𝑜𝑓 𝐷𝐹𝑆𝑀 𝑀 

 

 

 
2 

(a) 

Define the following with examples : 

i) String ii)Power  of an alphabet 

String: A finite Sequence, possibly empty, of symbols drawn from some 

alphabet Σ. Given any alphabet, the shortest string is ε. Σ* is the set of all possible 

strings over an alphabet Σ. 

Example: 

English Alphabet {a, b, c,...,z} Strings : {sat, laugh, happy} 

Binary Alphabet {0,1} Strings: {011, 111, 1000, 0110} 

ii) Power of an alphabet 

 the set of all strings can be expressed as a certain length from that alphabet by using 

exponential notation.  The power of an alphabet is denoted by Σk and is the set of strings of 

length k. 

 Σ ={0,1} 

 Σ1= {0,1} ( 21=2) 

 Σ2= {00,01,10,11} (22=4) 

 Σ3= {000,001,010,011,100,101,110,111} (23= 8) 

The set of strings over an alphabet Σ is usually denoted by Σ*(Kleene closure) 

For instance, Σ*= {0,1}* 

={ ε,0,1,00,01,10,11,………} 

 

 04] CO1 L1 

   

(b)  
Design a DFSM for {w∈{a,b}*: #a mod 5 = 0}. (Number of a’s is divisible by 5) Write the 

definition. Show computation for w = aabaaa and w=abab and state whether it is an accepting 

or rejecting configuration. 

 
Definition 

M= (𝐾, Σ, δ, s, A) 

M= ({𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4}, {𝑎, 𝑏}, 𝛿, 𝑞0, {𝑞0}) 

Transition Table 

𝜹 a b 

∗
⟶ 𝑞0 

𝑞1 𝑞0 

𝑞1 𝑞2 𝑞1 

Computation 

(𝑞0, 𝑎𝑎𝑏𝑎𝑎𝑎) ⊢ (𝑞1, 𝑎𝑏𝑎𝑎𝑎)  ⊢ (𝑞2, 𝑏𝑎𝑎𝑎) 

⊢ (𝑞2, 𝑎𝑎𝑎) ⊢ (𝑞3, 𝑎𝑎) ⊢ (𝑞4, 𝑎) ⊢ (𝑞0, 𝜀) 
(𝑞0, 𝑎𝑎𝑏𝑎𝑎𝑎) ∗
⊢ (𝑞0, 𝜀) 𝑖𝑠 𝑎𝑛 𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑞𝑎 𝐴 𝑜𝑓 𝐷𝐹𝑆𝑀 𝑀 

 

(𝑞0, 𝑎𝑏𝑎𝑏) ⊢ (𝑞1, 𝑏𝑎𝑏) ⊢  (𝑞1, 𝑎𝑏) ⊢  (𝑞2, 𝑏)  ⊢  (𝑞2, 𝜀) 

[06] CO1 L3 



 

𝑞2 𝑞3 𝑞2 

𝑞3 𝑞4 𝑞3 

𝑞4 𝑞0 𝑞4 
 

 

(𝑞0, 𝑎𝑏𝑎𝑏) ∗⊢ (𝑞2, 𝜀) 𝑖𝑠 𝑎 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑞4

∉ 𝐴 𝑜𝑓 𝐷𝐹𝑆𝑀 𝑀 
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(a)  
Define Moore machine. Design Moore machine to output Y when there is a sequence 010 Σ = 

{0,1} 

A Moore machine M is a seven-tuple(𝐾, Σ, 𝑂, 𝛿, 𝐷, 𝑠, 𝐴)  where: 

• K is a finite set of states, 

•Σ is an input alphabet, 

• O is an output alphabet, 

• 𝑠 ∈ 𝐾 is the start state, 

•𝐴 ⊆ 𝐾 is the set of accepting states (although for some applications this designation is not 

important), 

• 𝛿 is the transition function. It is function from (𝐾 × Σ)𝑡𝑜 (𝐾)and 

• D is the display or output function. It is a function from (K ) to (O*). 

A Moore machine M computes a function f(w) iff, when it reads the input string w, its output 

sequence is f(w). 

 
M= ({𝑞0, 𝑞1, 𝑞2, 𝑞3}, {0,1}, {𝑌, 𝑁}, 𝛿, 𝑞0, {𝑞0}, {𝑞3}) 

𝜹 0 1 

∗⟶ 𝑞0/𝑁 𝑞1 𝑞0 

𝑞1/𝑁 𝑞1 𝑞2 

𝑞2/𝑁 𝑞3 𝑞0 

𝑞3/𝑌 𝑞3 𝑞3 
 

[05] CO1 L2 

   

(b) 
Design DFSM to {w∈{0,1}*: w contains even number of 0s and odd number of 1s}.   

Definition 

M= (𝐾, Σ, δ, s, A) 

M= ({𝑞0, 𝑞1, 𝑞2, 𝑞3}, {0,1}, 𝛿, 𝑞0, {𝑞2}) 

 

[05] CO1 L3 



 

 
q0 – even number of 0s, even number of 1s 

q1 – odd number of 0s, even number of 1s 

q2 – even number of 0s, odd number of 1s 

q3 – odd number of 0s, odd number of 1s 

𝜹 0 1 

⟶ 𝑞0 𝑞1 𝑞2 

𝑞1 𝑞0 𝑞3 

∗ 𝑞2 𝑞3 𝑞0 

𝑞3 𝑞2 𝑞1 

 

(𝑞0, 010) ⊢ (𝑞1, 10) ⊢  (𝑞3, 0) ⊢  (𝑞2, 𝜀) 
(𝑞0, 010) ∗⊢ (𝑞2, 𝜀) 𝑖𝑠 𝑎 𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑞2 ∈ 𝐴 𝑜𝑓 𝐷𝐹𝑆𝑀 𝑀 

 

(𝑞0, 00) ⊢ (𝑞1, 0) ⊢  (𝑞0, 𝜀) 
(𝑞0, 00) ∗⊢ (𝑞0, 𝜀) 𝑖𝑠 𝑎 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑠 𝑞0 ∉ 𝐴 𝑜𝑓 𝐷𝐹𝑆𝑀 𝑀 

 

 

4 

(a) 
Write difference between NDFSM and DFSM 

 

DFSM NDFSM 

Uses a transition function, δ that maps 

a state to another state based on the 

input symbol read. 

maps k x input symbol to k 
Where k is a state 

Uses a transition relation Δ which is a 

finite subset of (k×(Σ∪{ε}))×k 

On each input symbol there is exactly  

one transition 

There may or may not be a transition 

on a input symbol. There may be more  

than one transition on an input symbol 

(competing moves) 

There is only one configuration for an 

input string 

There may be more than one 

configuration for an input string 

After reading a string, if the final state 

is an accepting state, then the string is 

accepted 

After reading a string, if one of the 

states in the final configuration is 

accepting state, the string is accepted 

by the machine 

Difficult to construct Easy to construct 

Behaves deterministically Guesses the next step 

[05] CO1 L2 



 

ε - transitions are not allowed ε- transitions are allowed 
 

   

(b)  
Design an NDFSM for {w∈{a,b}*: w ends with abba or w ends with bab}.  Write the 

definition.  Show computation  for w =babba and w = abab and state whether it is an accepting 

or rejecting configuration.. 

 
M= ({𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑞8, 𝑞9}, {𝑎, 𝑏}, Δ, 𝑞0, {𝑞5, 𝑞9}) 

𝜟 eps(q) a b 

⟶ 𝑞0  − − 

𝑞1  {𝑞1, 𝑞2} {𝑞1} 

𝑞2  − 𝑞3 

𝑞3  − 𝑞4 

𝑞4  𝑞5 − 

𝑞5  − − 

𝑞6  𝑞6 {𝑞6, 𝑞7} 

𝑞7  𝑞8 − 

𝑞8  − 𝑞9 

𝑞9  − − 

 

Computation 

[05] CO1 L3 



 

 
 

(𝑞0, 𝑏𝑎𝑏𝑏𝑎) 

(𝑞1, 𝒃𝑎𝑏𝑏𝑎) (𝑞6, 𝒃𝑎𝑏𝑏𝑎) 

(𝑞2, 𝒃𝑏𝑎) 

(𝑞3, 𝒃𝑎) 

(𝑞4, 𝒂) 

(𝑞5, 𝜺) 

(𝑞0, 𝒃𝒂𝒃𝒃𝒂) ⊢∗ (𝑞5, 𝜺) is an accepting configuration and hence abba is accepted 

by NDFSM M/ 
({𝑞0, 𝑞1, 𝑞6}, 𝒃𝑎𝑏𝑏𝑎) ⊢ ({𝑞1, 𝑞6, 𝑞7}, 𝒂𝑏𝑏𝑎) ⊢ ({𝑞1, 𝑞2, 𝑞6, 𝑞8}, 𝒃𝑏𝑎)  ⊢

൫{𝑞1, 𝑞3,, 𝑞6, 𝑞7, 𝑞9}, 𝒃𝑎൯ ⊢ ൫{𝑞1, 𝑞4,, 𝑞6, 𝑞7}, 𝒂൯ ⊢ ({𝑞1, 𝑞2, 𝑞5,, 𝑞6, 𝑞8}, 𝜀).  

Since q5 is an accepting state the computation is accepting 

 

(𝑞1, 𝒃𝑏𝑎) 

(𝑞1, 𝒃𝑎) 

(𝑞1, 𝒂) 

(𝑞1, 𝜀) (𝑞2, 𝜀) 

(𝑞6, 𝒃𝑏𝑎) 

(𝑞6, 𝒃𝑎) 
(𝑞7, 𝒃𝑎) 

(𝑞6, 𝑎) 
(𝑞7, 𝒂) 

(𝑞8, 𝜺) (𝑞6, 𝜺) 

(𝑞1, 𝒂𝑏𝑏𝑎) 
(𝑞6, 𝒂𝑏𝑏𝑎) (𝑞7, 𝒂𝑏𝑏𝑎) 

(𝑞8, 𝒃𝑏𝑎) 

(𝑞9, 𝒃𝑎) 
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(a) 

Write the procedure for eps(q) 

eps(q) or ε-closure are the set of states reachable from q following 0 or more ε- transitions. 

eps(q) = {p∈k: (q,w) |—*(p,w) 

where eps(q) is the closure of {q} under the relation {(p,r): there is a transition 
(p, ε, r)∈ Δ} 
eps(q:state)= 

1. result = {q} 

2. While there exists some p∈result and q∉result, and some transition, (p, ε, r)∈Δ do :      

     Insert r into result. 

       3. Return result 

 

[03] CO2 L2 

   

(b)  
Convert the following NDFSM to an equivalent DFSM and write its definition. Show steps.Σ 

= {a,b,c}, λ represents ε-transitions 

 

𝜟 a b c eps(q) 

[07] CO2 L3 

(𝑞0, 𝑎𝑏𝑎𝑏) 

(𝑞1, 𝒂𝑏𝑎𝑏) (𝑞6, 𝒂𝑏𝑎𝑏) 

(𝑞7, 𝒂𝑏) 

(𝑞8, 𝒃) 

(𝑞0, 𝒂𝒃𝒂𝒃) ⊢∗ (𝑞9, 𝜺) is an accepting configuration as 𝑞9 ∈ 𝐴 and 

hence bab is accepted by NDFSM M 
({𝑞0, 𝑞1, 𝑞6}, 𝒂𝑏𝑎𝑏) ⊢ ({𝑞1, 𝑞2, 𝑞6}, 𝒃𝑎𝑏) ⊢ ({𝑞1, 𝑞3, 𝑞6, 𝑞7}, 𝒂𝑏)  ⊢
({𝑞1, 𝑞2, 𝑞6, 𝑞8}, 𝒃) ⊢ ({𝑞1, 𝑞3, 𝑞6, 𝑞7, 𝑞9}, 𝜀) . Since q9 is an 

accepting state, the computation is accepting 

 

(𝑞9, 𝜺) 

(𝑞1, 𝒂𝑏) 

(𝑞1, 𝒃) (𝑞2, 𝒃) 

(𝑞1, 𝜺) (𝑞3, 𝜺) 

(𝑞6, 𝒂𝑏) 

(𝑞6, 𝒃) 

(𝑞6, 𝜺) (𝑞7, 𝜺) 

(𝑞6, 𝒃𝑎𝑏) (𝑞1, 𝒃𝑎𝑏) (𝑞2, 𝒃𝑎𝑏) 

(𝑞3, 𝒂𝑏) 



 

⟶ 𝑝 - q r {p,q,r} 

q p r {p,q}   - 

*r -  - - {r} 

 

 

NdfsmToDFSM 

𝒂𝒄𝒕𝒊𝒗𝒆_𝒔𝒕𝒂𝒕𝒆𝒔 a b c 

⟶∗ {𝑝, 𝑞, 𝑟} 𝑒𝑝𝑠(𝑝) = {𝑝, 𝑞, 𝑟} 𝑒𝑝𝑠(𝑞) ∪ 𝑒𝑝𝑠(𝑟)
= {𝑞, 𝑟} 

𝑒𝑝𝑠(𝑟) ∪ 𝑒𝑝𝑠(𝑝)  
∪ 𝑒𝑝𝑠(𝑞)
= {𝑝, 𝑞, 𝑟} 

∗ {𝑞, 𝑟} 𝑒𝑝𝑠(𝑝) = {𝑝, 𝑞, 𝑟} 𝑒𝑝𝑠(𝑟) = {𝑟} 𝑒𝑝𝑠(𝑟) ∪ 𝑒𝑝𝑠(𝑝)  
∪ 𝑒𝑝𝑠(𝑞)
= {𝑝, 𝑞, 𝑟} 

∗ {𝑟} ∅ ∅ ∅ 

∅ ∅ ∅ ∅ 
 

6 (a)           Write procedure for NDFSM to DFSM. 

ndfsmtodfsm(M: NDFSM) = 

1. For each state q in K do: 

      Compute eps(q).  

2. s' = eps(s) 

3. Compute 𝛿′: 
3.1. active-states = {s'}. 

3.2. 𝛿′ = 𝜙 

3.3. While there exists some element Q of active-states for which 𝛿′ has not yet been 

computed do: 

          For each character c in Σ do: 

                new-state = 𝜙. 

                For each state q in Q do: 

                     For each state p such that (q, c, p) ∈ Δ do: 

                            new-state = new-state ∪ eps(p). 

               Add the transition (Q, c, new-state) to 𝛿′ 

If new-state ∉ active-states then insert it into active-states. 

4. K' = active-states. 

5. A' = {𝑄 ∈ 𝐾′: 𝑄 ∩ 𝐴 ≠ Φ}   

[05] CO2 L2 

   (b) Convert the following NDFSM to an equivalent DFSM and write it’s definition. Σ = 

{0,1}. (Note that it is not required to calculate eps(q) as there are no ε-transitions) 

 

𝜟 0 1 

⟶ 𝑞0 {𝑞0, 𝑞1} {𝑞1} 

*𝑞1 𝑞2 𝑞1 

𝑞2 -  𝑞2 

[05] CO2 L3 



 

 

ndfsmToDfsm simulate  

𝒂𝒄𝒕𝒊𝒗𝒆_𝒔𝒕𝒂𝒕𝒆𝒔 0 1 

⟶ 𝑞0 {𝑞0, 𝑞1} {𝑞1} 

*{𝑞0, 𝑞1} {𝑞0, 𝑞1, 𝑞2} {𝑞0, 𝑞1} 

∗ {𝑞1} {𝑞2} {𝑞2} 

*{𝑞0, 𝑞1, 𝑞2} {𝑞0, 𝑞1, 𝑞2} {𝑞1, 𝑞2} 

{𝑞2} ∅ {𝑞2} 

∗ {𝑞1, 𝑞2} {𝑞2} {𝑞2} 

∅ ∅ ∅ 

 

 

 

The DFSM M’ 

𝜹′ 0 1 

⟶ 𝐴 𝐵 𝐶 

*𝐵 𝐷 𝐵 

∗ 𝐶 𝐸 𝐸 

∗ 𝐷 𝐷 𝐹 

𝐸 𝐺 𝐸 

*𝐹 𝐸 𝐸 

𝐺 𝐺 𝐺 

 

𝑀′ = (𝐾′, Σ, 𝛿′, 𝑠′, 𝐴′) 

𝑀′ = ({𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺}, {0,1}, 𝛿′, 𝐴, {𝐵, 𝐶, 𝐷, 𝐹} 

 

 

7 (a) Define Mealy machine. Design a Mealy machine to find 2s complement of a binary 

number.   Show the output string for the input 11100 

 

 A Mealy machine M is a six-tuple (𝐾, Σ, 𝑂, 𝛿, 𝑠, 𝐴) where: 

• K is a finite set of states, 

•Σ is an input alphabet, 

• O is an output alphabet, 

• 𝑠 ∈ 𝐾 is the start state, 

•𝐴 ⊆ 𝐾 is the set of accepting states, and 

•𝛿 is the transition function. It is function from (𝐾 × Σ)𝑡𝑜 (𝐾 × 𝑂∗) 

A Mealy machine M computes a function f(w) iff, when it reads the input string w, 

its output sequence is f(w). 

 

[05] CO 1 L1 

𝛿({𝑞0, 𝑞1},0) =  𝛿(𝑞0, 0) ∪
δ(𝑞1, 0) = {𝑞0, 𝑞1} ∪  
{𝑞2} = {𝑞0, 𝑞1, 𝑞2} 



 

 
M= ({𝑞0, 𝑞1}, {0,1}, {0,1}, 𝛿, 𝑞0, {𝑞0} ) 

𝜹 0 1 

∗⟶ 𝑞0 𝑞0/0 𝑞1/0 

𝑞1 𝑞1/1 𝑞1/1 

 

Output string for 11100 -  

11100 

Starting from LSB – 00100 

 

   (b)  Design a DFSM which will accept decimal numbers divisible by 4.  Show the 

acceptanc eof the input 1124. 

𝜹 0 1 2 3 4 5 6 7 8 9 

∗
⟶Q0 

Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 Q0 Q1 

Q1 Q2 Q3 Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 

Q2 Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 Q0 Q1 

Q3 Q2 Q3 Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3 

 

𝜹(𝒒𝟎, 𝟏) = 𝒒𝟏 

 

𝜹(𝒒𝟎, 𝟏𝟏) = 𝜹(𝒒𝟏, 𝟏) = 𝒒𝟑 

 

𝜹(𝒒𝟎, 𝟏𝟏𝟐) = 𝜹(𝒒𝟑, 𝟐) = 𝒒𝟎 

𝜹(𝒒𝟎, 𝟏𝟏𝟐𝟒) = 𝜹(𝒒𝟎, 𝟒) = 𝒒𝟎 

 

It is accepted. 

Q8 option available only for Section A&C 

[05] CO 1 L2 

8 (a)  What is meant by indistinguishable states, i.e. when q≡p.  What is meant by 

distinguishable states?  

≡𝑝 are indistiguishable iff for all strings 𝑤∈Σ∗ either w drives M to an accepting 

state from both q and p or it drives M to a rejecting state from both q and p. 

q and 𝑝 are distinguishable if for all strings, 𝑤∈Σ∗ w drives M to an accepting state 

from q and a non-accepting state from p or vice versa. 

 

[03] CO2 L2 

   (b) Minimize the following DFSM :  [07] CO2 L3 



 

 
 

 

First, we divide into accepting and non accepting classes. Classes = [0,2], [1,3,4,5] 

[0,2] a b    

[0] [1,3,4,5] [1,3,4,5] No splitting required as both 0 and 2 

drive      

  a and b to the same non-accepting class 

 

[2] [1,3,4,5] [1,3,4,5]  

 

[1,3,4,5] a b  
[1] [0,2] [1,3,4,5] Splitting required, [1],[3,5],[4] 
[3] [1,3,4,5] [0,2] 

[4] [1,3,4,5] [1,3,4,5] 
[5] [1,3,4,5] [0,2] 

 

Classes = [0,2],[1],[3,5],[4] 

[0,2] a  b   

[0] [1] [3,5] No splitting required as both 0 and 2 
drive a to non-accepting class [1] and 
b to non- accepting class [3,5] 

 

[2] [1] [3,5] 

 

[3,5] a b  

[3] [4] [0,2] No splitting required as both 3 and 5 
drive a to non-accepting class [4] and b 
to accepting class [0,2] [5] [4] [0,2] 

Classes = [0,2],[1],[3,5],[4] 

 
The definition of the DFSM is as follows. 

M’ = (k’,Σ, δ, s’,A’) where 
K’= {[0,2],[1],[3,5],[4]} 
Σ = {a,b} 

δ = { (([0,2], a),[1]), (([0,2], b), [3,5]), 
(([1], a), [0,2]), (([1], b), [4]), 
(([3,5], a), [4]), (([3,5], b), [0,2]), 
(([4], a), [3,5]), (([4], b), [1]) 
} 
s’=[0,2] 

Transition Table 

δM’ a b 
→*[0,2] 

[1] 

[3,5] 

[4] 

[1] [3,5] 

[0,2] [4] 

[4] [0,2] 

[3,5] [1] 

 



 

A’ = {[0,2]} 
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P
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4 

CO1 

Acquire fundamental understanding of 
the core concepts in automata theory 
and Theory of Computation 
 

1,2,3,4
,5 

2 3 - - - 2 - - - - - - - 3  3 

CO2 

Learn how to translate between 
different models of Computation (e.g., 
Deterministic and Non-deterministic 
and Software models). 
 

1,2 

2 3 2 2 2 2 - - - - - - - 3 3 3 

CO3 

Design Grammars and Automata 
(recognizers) for different language 
classes and become knowledgeable 
about restricted models of 
Computation (Regular, Context Free) 
and their relative powers. 
 

2,3 

2 3 2 2 2 2 - - - - - - 2 - 3 - 

CO4 
Develop skills in formal reasoning and 
reduction of a problem to a formal 

3,4 2 3 2 2 - 2 - - - - - - 2 2 3 3 



 

model, with an       emphasis on 
semantic precision and conciseness. 
 

CO5 
Classify a problem with respect to 
different models of Computation 
 

5 
2 3 2 2 - 3 - - - - - - 3 3 3 3 

 

 

COGNITIVE 

LEVEL 
REVISED BLOOMS TAXONOMY KEYWORDS 

L1 
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, 

when, where, etc.  

L2 
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, 

discuss, extend  

L3 
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, 

change, classify, experiment, discover.  

L4 
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, 

infer.  

L5 
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, 

discriminate, support, conclude, compare, summarize.  

 

 

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) 
CORRELATION 

LEVELS 

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation 

PO2 Problem analysis PO8 Ethics 1 Slight/Low 

PO3 Design/development of solutions PO9 Individual and team work 2 
Moderate/ 

Medium 

PO4 
Conduct investigations of 

complex problems 
PO10 Communication 3 

Substantial/ 

High 

PO5 Modern tool usage PO11 Project management and finance  

PO6 The Engineer and society PO12 Life-long learning  

PSO1 Develop applications using different stacks of web and programming technologies 

PSO2 Design and develop secure, parallel,  distributed, networked, and digital systems 

PSO3 Apply software engineering methods to design, develop, test and manage software systems. 

PSO4 Develop  intelligent applications for business and industry  

 

 


