

USN

Internal Assessment Test 1–Nov 2022
Sub: Data Structures and Applications SubCode: 21CS32 Branch: ISE

Date: 1.12.2022 Duration: 90min’s MaxMarks: 50 Sem/Sec: III A, B &C OBE
Answer any FIVE FULL Questions MARKS CO RBT

1a) Consider 2 polynomials, A(x) = 4x15+3x4+5 & B(x) = x4+10x2+1. Represent
polynomials using array of structures (show diagrammatically show these 2
polynomials can be stored in 1D array) and also give its C representation.

6 CO1 L2

1b) Define Data Structures. Explain the various types of data structures with examples. 4 CO1 L1

2 Write a C program to demonstrate inserting, deleting and searching operations on
arrays. Support your program with functions.

10 CO1 L3

3a) Convert the following infix expressions to postfix expressions :
1. (a+(b-c)*(d-e)%f)
2. (a+b) * d – e / (f +a * d) +c
3. ((a / (b – c + d)) * (e – f) * g)

6 CO2 L2

3b) Describe how to represent 1D and 2D arrays in memory with diagram. 4 CO1 L2

4a) Discuss the representation of multidimensional arrays with examples. 6 CO1 L2

P.T.O.

USN

Internal Assessment Test 1–Nov 2022
Sub: Data Structures and Applications SubCode: 21CS32 Branch: ISE

Date: 1.12.2022 Duration: 90min’s MaxMarks: 50 Sem/Sec: III A, B &C OBE
Answer any FIVE FULL Questions MARKS CO RBT

1a) Consider 2 polynomials, A(x) = 4x15+3x4+5 & B(x) = x4+10x2+1. Represent
polynomials using array of structures (show diagrammatically show these 2
polynomials can be stored in 1D array) and also give its C representation.

6 CO1 L2

1b) Define Data Structures. Explain the various types of data structures with examples. 4 CO1 L1

2 Write a C program to demonstrate inserting, deleting, and searching operations on
arrays.

10 CO1 L3

3a) Convert the following infix expressions to postfix expressions :
1. (a+(b-c)*(d-e)%f)
2. (a+b) * d – e / (f +a * d) +c
3. ((a / (b – c + d)) * (e – f) * g)

6 CO2 L2

3b) Describe how to represent 1D and 2D arrays in memory with diagram. 4 CO1 L2

4a) Discuss the representation of multidimensional arrays with examples. 6 CO1 L2

P.T.O.

4b) Describe self referential structures with an appropriate example. 4 CO1 L2

5 Discuss the concept of dynamic 2D arrays with example. Write a C program to
create and display dynamic 2D array.

10 CO1 L3

6a) What is realloc()? Explain with proper syntax and example program. 6 CO1 L2

6b) List and explain any 3 applications of stack data structure. 4 CO2 L1

Faculty Signature CCI Signature HOD Signature

4b) Describe self referential structures with an appropriate example. 4 CO1 L2

5 Discuss the concept of dynamic 2D arrays with example. Write a C program to
create and display dynamic 2D array.

10 CO1 L3

6a) What is realloc()? Explain with proper syntax and example. 6 CO1 L2

6b) List and explain any 3 applications of stack data structure. 4 CO2 L1

Faculty Signature CCI Signature HOD Signature

Scheme of Evaluation

Internal Assessment Test 1 –DEC 2022

Sub: Data Structures and Applications Code: 21CS32

Date:

1.12.2022

Duration:

90mins

Max
Marks:

50 Sem: III Branch: ISE

Note: Answer Any five full questions.

Question

Description Marks Distribution Max
Marks

 Consider 2 polynomials, A(x) = 4x15+3x4+5 & B(x)

= x4+10x2+1. Represent polynomials using array of
structures (show diagrammatically show these 2
polynomials can be stored in 1D array) and also give
its C representation.

1

a) Diagrammatic representation
Explanation + C representation

3M+3M

6M 10M

b) Define Data Structures. Explain the various types of
data structures with examples
Definition
Explaining types with examples

1M+3M 4M

2

 Write a C program to demonstrate inserting, deleting
and searching operations on arrays. Support your
program with functions.
Program write up with function for each
operation

1M+3X3M 10M 10M

a) Convert the following infix expressions to postfix

expressions :
1. (a+(b-c)*(d-e)%f)
2. (a+b) * d – e / (f +a * d) +c
3. ((a / (b – c + d)) * (e – f) * g)

Conversion steps + Obtaining answer

 3X2M

3 6M 10M

3

b) Describe how to represent 1D and 2D arrays in
memory with diagram.

Representation and Explaining 1D and 2 D arrays

2M+2M

4M

4

a) Discuss the representation of multidimensional
arrays with examples.

Representation + Example

4M

2M

6M

10M

b) Describe self referential structures with an
appropriate example.
Explanation + Example

2M+2M 4M

5 Discuss the concept of dynamic 2D arrays with
example. Write a C program to create and display
dynamic 2D array.
Explanation + Example Program

3M+7M

10M

10M

6

a) What is realloc()? Explain with proper syntax and
example program.
Definition + Syntax with explanation +Example
program

1M+2M+

3M

6M

10M

6

b) List and explain any 3 applications of stack

data structure.

List + Explanation

 1M+3M

4M

Scheme

Sub: Data Structures and Applications

Date:

1.12.2022

Duration:

Note: Answer Any five full questions.

1a) Consider 2 polynomials, A(x) = 4x
using array of structures (show diagrammatically show these 2 polynomials can be stored in 1D
array) and also give its C representation.

Solution:

Consider the two polynomials
A(x) = 4x15+3x
B(x) = x4+10x2

Figure below shows how these polynomials are stored in the array terms. The index of the
first term of A and B is given by startA and startB, respectively, finishA and finishB give
the index of the last term of A and
array is given by avail.

For our example, startA = 0, finishA

Start A

Coef

Exp

0 1 2 3 4 5 6 7 8

Figure 1.3

 There is no limit on the
 The total number of nonzero terms

Polynomial Representation
 A polynomial can be represented
 Only one global array, terms,
 The C declarations needed

define MAX_TERMS 100 /*size
 typedef struct {
float coef;
int exp;
} polynomial;

4 3
15 4

Scheme of EvaluationInternal Assessment Test 1 –DEC

Data Structures and Applications

Duration:

90mins

Max
Marks:

50 Sem: III

questions.

Consider 2 polynomials, A(x) = 4x15+3x4+5 & B(x) = x4+10x2+1. Represent polynomials
using array of structures (show diagrammatically show these 2 polynomials can be stored in 1D

its C representation.

+3x4+5

2+1
Figure below shows how these polynomials are stored in the array terms. The index of the

of A and B is given by startA and startB, respectively, finishA and finishB give
and B respectively. The index of the next free

finishA = 1, startB = 2, finishB = 5, and avail

 Finish A startB FinishB avail

0 1 2 3 4 5 6 7 8

 Representation of polynomial in array

the number of polynomials that we can place in
nonzero terms must not be greater than MAX_TERMS.

Representation in C:
be represented as an array of structures as follows.

terms, is used to store all the polynomials.
needed are:

/*size of terms array*/

1 1 10 1

0 4 2 0

DEC 2022

Code: 21CS32

Branch: ISE

+1. Represent polynomials
using array of structures (show diagrammatically show these 2 polynomials can be stored in 1D

Figure below shows how these polynomials are stored in the array terms. The index of the
of A and B is given by startA and startB, respectively, finishA and finishB give

free location in the

 =6.

avail

0 1 2 3 4 5 6 7 8

array

 terms.
MAX_TERMS.

follows.

polynomial terms[MAX_TERMS];
 int avail = 0;

1b) Define Data Structures. Explain the various types of data structures with examples.
Solution:
Data Structures: A data structure is a particular method of storing and organizing data in a
computer so that it can be used efficiently.

The data Structure is classified into
a. Primitive data structure: These can be manipulated directly by the machine instructions.
Example integer, character, float etc

b. Non primitive data structures: They cannot be manipulated directly by the machine
instructions. The non primitive data structures are further classified into linear and non linear data
structures.
 Linear data structures: show the relationship of adjacency between the elements
of the data structures. Example are arrays, stacks, queues , list etc.
 Non linear data structure: They do not show the relationship of adjacency between
the elements. Example are Trees and graphs

2. Write a C program to demonstrate inserting, deleting, and searching operations on arrays.
Solution:
#include<stdio.h>
int a[20], n,i,pos,ele;
// Creating an Array of N Integer Elements
void create()
{
printf("\nEnter the number of elements\n");
scanf("%d",&n);
printf("\nEnter the elements one by one\n");
for(i=0;i<n;i++)
 scanf("%d",&a[i]);
}
//c. Display of Array Elements with Suitable Headings
void display()
{
printf("\n The array elements are:\n");
for(i=0;i<n;i++)
 printf("\na[%d]=%d",i,a[i]);
}
//a. Inserting an Element (ELEM) at a given valid Position (POS)
void insert()
{
printf("\nEnter the position where you wish to insert new element\n");
scanf("%d",&pos);
//check for valid position
if(pos>=n+1)
printf("Invalid position\n");
else

{
printf("\n Enter the element to be inserted:\t");
scanf("%d",&ele);
//shifting element to right
for(i=n-1;i>=pos;i--)
a[i+1]=a[i];
//inserts at specific position given
a[pos]=ele;
n++; //update number of elements
}
}
//b. Deleting an Element at a given valid Position(POS)
void delete()
{
printf("\nEnter the position from where you wish to delete element\n");
scanf("%d",&pos);
//check for valid position
if(pos>=n+1)
printf("Invalid position\n");
else
{
printf("\n Deleted Element is : %d",a[pos]);
//shifting element to left and delete the element form position
for(i=pos;i<n-1;i++)
 a[i]=a[i+1];
n--; //update number of elements
}
}
void main()
{
int choice;
// infinit loop for menu
while(1)// infinite loop for menu
{
printf("\n ARRAY OPERATIONS");
printf("\n Enter your choice");
printf("\n 1.CREATE\n 2.DISPLAY\n 3.INSERT \n 4.DELETE\n 5.EXIT\n");
scanf("%d",&choice);
switch(choice)
{
case 1:create();
break;
case 2:display();
break;
case 3:insert();
break;
case 4:delete();
break;
case 5:return;

default:printf("\n Invalid choice\n");
}
}
}

3a) Convert the following infix expressions to postfix expressions :
1. (a+(b-c)*(d-e)%f)
2. (a+b) * d – e / (f +a * d) +c
3. ((a / (b – c + d)) * (e – f) * g)

Solution:

3b) Describe how to represent 1D and 2D arrays in memory with diagram.
Solution:

4a) Discuss the representation of multidimensional arrays with examples.
Solution:

4b) Describe self referential structures with an appropriate example.
Solution:
 A self-referential structure is one in which one or more of its data member is a
pointer to itself. They require dynamic memory allocation (malloc and free) to
explicitly obtain and release memory.
 These are the structures in which one or more pointers point to the structure of the
same type.

 A Self-Referential Structure means when a structure is referencing another
structure of same type.
Example:
struct self {
int p;
struct self *ptr; //It’s a pointer to the same structure.
} ;

 Each instance of the structure self will have two components, p and ptr. p is a single integer
variable, while ptr is a pointer to a self structure.
 The value of ptr is either the address in memory of an instance of self or the null pointer.

Example:
strcut code{
int i;
char c;
strcut code *ptr;
};
void main(){
struct code var1;
struct code var2;
var1.i=65;
var1.c=’A’;
var1.ptr=NULL;
var2.i=69;
var2.c=’B’;
var2.ptr=NULL;
var1.ptr=&var2; //With this statement var1 can access var2 members.
printf(“%d%c”, var1.ptr->i,var1.ptr->c);
}
Output:
66 B

5. Discuss the concept of dynamic 2D arrays with example. Write a C program to create and
display dynamic 2D array.
Solution:

By using the concept of pointers with dynamic memory management, we can realize 2D dynamic
arrays that are useful for many advanced applications. Consider the array declaration:
int a[3][4];

The compiler allocates 12 memory locations each of sizeof(int) bytes. In program, we may use less
number of memory locations making rest of the memory locations useless. If an application wants
more than 12 items to be stored, it is not possible in this case because only 12 memory locations are
reserved by the compiler. It is at this point where dynamic storage becomes useful. Here, we can
allocate required number of bytes to be accessed during run time.

The program shows how to create a 2D dynamic array and print the contents of the same:
#include<stdlib.h>

void main()
{
int row,col,i,j;
printf(“\n enter the size of the array:”);
scanf(“%d%d”,&row,&col);
int *arr=(int *) malloc(row*col*sizeof(int));
printf(“\nenter 2D-array elements\n”);
for(i=0;i<row;i++)
{
for(j=0;j<col;j++)
{
scanf(“%d”, (arr+i*col+j));
}
}
printf(“\n2D-array elements are: \n”);
for(i=0;i<row;i++)
{
for(j=0;j<col;j++)
{
printf(“%d ”, *(arr+i*col+j));
}
printf(“\n”);
}
free(arr);
}
6 a) What is realloc()? Explain with proper syntax and example program.
Solution:
Reallocation of memory(realloc): The function realloc resizes the memory previously
allocated by either malloc or calloc.

syntax: Void * realloc (void * ptr , size_t new_size);

Example:

int *p;
p=(int*)calloc(n,sizeof(int))
p=realloc(p,s) /*where s is the new size*/
The statement realloc(p,s) -- Changes the size of the memory pointed by p to s. The
existing contents of the block remain unchanged.
 When realloc is able to do the resizing it returns a pointer to the start of the new block
 When is not able to do the resizing the old block is unchanged and the function
returns the value NULL.

Example program:

#include<stdio.h>
//To use realloc in our program
#include<stdlib.h>

int main()
{
 int *ptr;

 //allocating memory for 10 integers
 ptr = malloc(10 * sizeof(int));

 //realloc memory size to store only 5 integers
 ptr = realloc(ptr, 5 * sizeof(int));

 return 0;
}

6b) List and explain any 3 applications of stack data structure.
Solution:
Application of stack
 Conversion of Expression
 Evaluation of expression
 Recursion

1. Conversion of Expression:
Compiler can not easily distinguish between the paranthesis and the operators. So we convert the
expressions from infix to postfix or prefix form.
2. Evaluation of Postfix expression
In high level languages, infix notation cannot be used to evaluate expressions. Instead compilers
typically use a parenthesis free notation to evaluate the expression. A common technique is to convert
a infix notation into postfix notation, then evaluating it.
3.Recursion
A Function calls itself is called recursion where stack is used to store the status of each function call.

**

