USN					

Internal Assessment Test 1 – Oct. 2022

Su b:	ARTIFICIAI LEARNING	LINTELLI	IGENCE A	ND MACHI	NE	Sub Code:	18CS71	Bra	nch:	CSE		
Date	20/10/2022	Duration:	90 mins	Max Marks:	50	Sem / Sec:		A,B,C			OE	BE
:		A	nswer any FI	 VE FULL Questi	ons					RKS	CO	RBT
1	a) Describe sim		•							3+3]	CO1	L1
	b) Discuss drav	vbacks of hi	ill climbing	algorithms an	d me	thods to ov	ercome them					
	c) Explain the t	erms local 1	minima and	plateau in hil	l clin	nbing algori	thm					
	return it ar	nd quit. Oth	erwise, con	o a goal state, tinue with the i								
	Loop until a operators (a) Select an o	left to be ap	found or ur oplied in the	ntil there are no current state: t been applied ce a new state.	to the							
	(b) Evaluate the new state.											
	(i) Ifitisagoa	l state, then r	eturn it and o	juit.								
		oal state but t the current		an the current st	ate,							
	(iii) If it is not be loop.	etter than the	current state	, then continue i	n the							
	howeve	I maximum I maximum r there exist) if the sear : It is a state is a state wh	0 0	ollov er tha	ving states. an all its nea t (global ma	ghbouring staximum). At	ates				
		au/flat local ouring states		It is a flat reg	ion (of state spac	e where					
	It is a sp Techniques to e Backtra Make a	pecial kind of escape from ck to some big jump in	of local max local mining earlier node some direc	mum e and try going	g in a			ope.				

	Iteration 3: Expand node 2.					
	Estimated best cost of nod	e 2 = : 25 + 1 = 26				
	Since node 6 is a terminal	node, node 6 is So	OLVED,			
	Hence node 2 is SOL	VED and hence no	ode 1 is SOLVED			
	Cost of root and best path	27, 1-> 2->6				
	26 2 3 11 4 31 25 26 4 5 5 6 7 8 9	12				
3	Using constraint satisfaction, solv CROSS + ROADS	e the cryptarithme	etic problem	10	CO2	L3
	DANGER					
	Ans:					
	Initial Constraints: $D = \{1\}, R = \{$	2, 4, 6, 8, $E=S+1$	or $S+2$ or 0 .			
	Final Answer is:					
	96233					
	+62513					
	158746					
4	a) List all production rules for		oblem and present a solution	7+3	CO2	L2
	b) List all the task domains of	f AI				
	Ans: a)					
	1 (x, y)	\rightarrow (4, y)	Fill the 4-gallon jug			
	$ if x < 4 \\ 2 (x, y) $	$\rightarrow (x, 3)$	Fill the 3-gallon jug			
	if y < 3	, (4, 5)	i iii die o ganon jug			
	3 (x, y)	$\rightarrow (x-d, y)$	Pour some water out of			
	if x > 0	, , ,	the 4-gallon jug			
	4(x, y)	$\rightarrow (x, y - d)$	Pour some water out of			
	if $y > 0$	5.77	the 3-gallon jug			
	5(x, y)	$\rightarrow (0, y)$	Empty the 4-gallon jug			
	if $x > 0$	/	on the ground			
	6 (x, y)	$\rightarrow (x, 0)$	Empty the 3-gallon jug			
	if $y > 0$		on the ground			
	7(x, y)	\rightarrow (4, y - (4 - x				
	if $x + y \ge 4$ and $y > 0$		3-gallon jug into the			
			4-gallon jug until the			
			4-gallon jug is full			
			- • •		1	

		8 (x, y) if $x + y \ge 3$ and $x > 0$ 9 (x, y) if $x + y \le 4$ and $y > 0$ 10 (x, y) if $x + y \le 3$ and $x > 0$ 11 $(0, 2)$		Pour water from the 4-gallon jug into the 3-gallon jug until the 3-gallon jug is full Pour all the water from the 3-gallon jug into the 4-gallon jug Pour all the water from the 4-gallon jug into the 3-gallon jug into the 2 gallons from the 3-gallon jug Empty the 2 gallons in the 4-gallon jug on			
		ne Tasks Perception Natural language process Common sense reasoning Robot control l Tasks Games: Mathematics	_	the ground			
5		Write various knowledge What are the properties of			6+4	CO1	L1
	Ans a) Ans b)	Are there any basic attrib How to handle sp Are there any basic relate Special attention "isa" hierarchy. So and to handle sing At what level should know Set of low level possible to the should sets be represented.	outes of objects? Decial attributes like "is ionships among object is needed to address the openial care should be gle valued attributes owledge be represented orimitives vs high level esented? Dittion vs intensional debe accessed?	sa" and "instance" s? ne properties such as inverses, taken to reason about values 1? I representation efinition			
		Representational Adequa	acy: Ability to represen	nt all kinds of knowledge			

	deriv Infe	ve new structerential efficient	ctures iency: Abilit	ty to incorp	late the reprorate addition using the representation of the repres	nal informa	ation			
	b) Desc	cribe Find-S	learning tas algorithm a esis. The tar likesSimon yes	and apply it	on the datas	set to arrive	at a maximally	5+5	L3	
	brown	thin	no	natural	pleasant	yes	-			
	blond	plump	yes	goofy	pleasant	no	-			
	black	thin	no	arrogant	none	no	-			
	blond	plump	no	natural	toothy	yes	_			
An	ns b)	Else r genera Output hy		a h by the at that is s	next more satisfied by					
	Find insta	S considerances in the	s only positi	ve example example,	s. There are	e only two p	positive			

