| USN | | | | | | |-----|--|--|--|--|--| ## Internal Assessment Test 1 – Oct. 2022 | Su
b: | ARTIFICIAI
LEARNING | LINTELLI | IGENCE A | ND MACHI | NE | Sub Code: | 18CS71 | Bra | nch: | CSE | | | |----------|--|---|--|--|-----------------|--|-------------------------|-------|------|------|-----|-----| | Date | 20/10/2022 | Duration: | 90 mins | Max Marks: | 50 | Sem / Sec: | | A,B,C | | | OE | BE | | : | | A | nswer any FI |
VE FULL Questi | ons | | | | | RKS | CO | RBT | | 1 | a) Describe sim | | • | | | | | | | 3+3] | CO1 | L1 | | | b) Discuss drav | vbacks of hi | ill climbing | algorithms an | d me | thods to ov | ercome them | | | | | | | | c) Explain the t | erms local 1 | minima and | plateau in hil | l clin | nbing algori | thm | | | | | | | | return it ar | nd quit. Oth | erwise, con | o a goal state,
tinue with the i | | | | | | | | | | | Loop until a operators (a) Select an o | left to be ap | found or ur
oplied in the | ntil there are no
current state:
t been applied
ce a new state. | to the | | | | | | | | | | (b) Evaluate the new state. | | | | | | | | | | | | | | (i) Ifitisagoa | l state, then r | eturn it and o | juit. | | | | | | | | | | | | oal state but
t the current | | an the current st | ate, | | | | | | | | | | (iii) If it is not be
loop. | etter than the | current state | , then continue i | n the | | | | | | | | | | howeve | I maximum
I maximum
r there exist |) if the sear
: It is a state
is a state wh | 0 0 | ollov
er tha | ving states.
an all its nea
t (global ma | ghbouring staximum). At | ates | | | | | | | | au/flat local
ouring states | | It is a flat reg | ion (| of state spac | e where | | | | | | | | It is a sp
Techniques to e
Backtra
Make a | pecial kind of escape from ck to some big jump in | of local max
local mining
earlier node
some direc | mum
e and try going | g in a | | | ope. | Iteration 3: Expand node 2. | | | | | | |---|---|------------------------------|------------------------------|-----|-----|----| | | Estimated best cost of nod | e 2 = : 25 + 1 = 26 | | | | | | | Since node 6 is a terminal | node, node 6 is So | OLVED, | | | | | | Hence node 2 is SOL | VED and hence no | ode 1 is SOLVED | | | | | | Cost of root and best path | 27, 1-> 2->6 | | | | | | | 26 2 3 11 4
31 25 26 4 5
5 6 7 8 9 | 12 | | | | | | 3 | Using constraint satisfaction, solv CROSS + ROADS | e the cryptarithme | etic problem | 10 | CO2 | L3 | | | DANGER | | | | | | | | Ans: | | | | | | | | Initial Constraints: $D = \{1\}, R = \{$ | 2, 4, 6, 8, $E=S+1$ | or $S+2$ or 0 . | | | | | | | | | | | | | | Final Answer is: | | | | | | | | 96233 | | | | | | | | +62513 | | | | | | | | | | | | | | | | 158746 | 4 | a) List all production rules for | | oblem and present a solution | 7+3 | CO2 | L2 | | | b) List all the task domains of | f AI | | | | | | | Ans: a) | | | | | | | | 1 (x, y) | \rightarrow (4, y) | Fill the 4-gallon jug | | | | | | $ if x < 4 \\ 2 (x, y) $ | $\rightarrow (x, 3)$ | Fill the 3-gallon jug | | | | | | if y < 3 | , (4, 5) | i iii die o ganon jug | | | | | | 3 (x, y) | $\rightarrow (x-d, y)$ | Pour some water out of | | | | | | if x > 0 | , , , | the 4-gallon jug | | | | | | 4(x, y) | $\rightarrow (x, y - d)$ | Pour some water out of | | | | | | if $y > 0$ | 5.77 | the 3-gallon jug | | | | | | 5(x, y) | $\rightarrow (0, y)$ | Empty the 4-gallon jug | | | | | | if $x > 0$ | / | on the ground | | | | | | 6 (x, y) | $\rightarrow (x, 0)$ | Empty the 3-gallon jug | | | | | | if $y > 0$ | | on the ground | | | | | | 7(x, y) | \rightarrow (4, y - (4 - x | | | | | | | if $x + y \ge 4$ and $y > 0$ | | 3-gallon jug into the | | | | | | | | 4-gallon jug until the | | | | | | | | 4-gallon jug is full | | | | | | | | - • • | | 1 | | | | | 8 (x, y)
if $x + y \ge 3$ and $x > 0$
9 (x, y)
if $x + y \le 4$ and $y > 0$
10 (x, y)
if $x + y \le 3$ and $x > 0$
11 $(0, 2)$ | | Pour water from the 4-gallon jug into the 3-gallon jug until the 3-gallon jug is full Pour all the water from the 3-gallon jug into the 4-gallon jug Pour all the water from the 4-gallon jug into the 3-gallon jug into the 2 gallons from the 3-gallon jug Empty the 2 gallons in the 4-gallon jug on | | | | |---|---------------|---|---|---|-----|-----|----| | | | ne Tasks Perception Natural language process Common sense reasoning Robot control l Tasks Games: Mathematics | _ | the ground | | | | | 5 | | Write various knowledge
What are the properties of | | | 6+4 | CO1 | L1 | | | Ans a) Ans b) | Are there any basic attrib
How to handle sp
Are there any basic relate
Special attention
"isa" hierarchy. So
and to handle sing
At what level should know
Set of low level possible to the should sets be represented. | outes of objects? Decial attributes like "is ionships among object is needed to address the openial care should be gle valued attributes owledge be represented orimitives vs high level esented? Dittion vs intensional debe accessed? | sa" and "instance" s? ne properties such as inverses, taken to reason about values 1? I representation efinition | | | | | | | Representational Adequa | acy: Ability to represen | nt all kinds of knowledge | | | | | | deriv
Infe | ve new structerential efficient | ctures
iency: Abilit | ty to incorp | late the reprorate addition using the representation of repres | nal informa | ation | | | | |----|---------------|---------------------------------|---|-------------------------|--|---------------|----------------|-----|----|--| | | b) Desc | cribe Find-S | learning tas
algorithm a
esis. The tar
likesSimon
yes | and apply it | on the datas | set to arrive | at a maximally | 5+5 | L3 | | | | brown | thin | no | natural | pleasant | yes | - | | | | | | blond | plump | yes | goofy | pleasant | no | - | | | | | | black | thin | no | arrogant | none | no | - | | | | | | blond | plump | no | natural | toothy | yes | _ | | | | | An | ns b) | Else r
genera
Output hy | | a h by the at that is s | next more
satisfied by | | | | | | | | Find insta | S considerances in the | s only positi | ve example example, | s. There are | e only two p | positive | | | |