

USN

Internal Assessment Test 1 –Nov 2022 Solutions

Sub: Python Application Programming
Sub

Code:
18CS752

Branch

:

ECE,EEE,

MECH

Date: 22.10.2022 Duration: 90 min’s
Max

Marks:
50

Sem/Sec

:
7 A, B, C OBE

Answer any FIVE FULL Questions
MAR

KS

CO RB

T

1 (a) What is a program? Explain the building blocks of programs.

Solve the problem by analyzing

Coordinate the use of resources (primary/secondary memory/networked

connections /IO Devices)

“Talking to the CPU”

Stored Instructions : Program

• The definition of a program at its most basic is a sequence of Python

statements that have been crafted to do something.

• hello.py script is a program. It is a one-line program and is not particularly

useful, but in the strictest definition, it is a Python program.

The act of writing the instructions and ensuring it is correct : Programming

Input : Get data from the “outside world”.

Output : Display the results of the program on a screen or store them in a file,

speaker,etc.

Sequential Execution : Perform statements one after another in the order they

are encountered in the script.

Conditional Execution - Check for certain conditions and then execute or skip

a sequence of statements.

Repeated Execution - Perform some set of statements repeatedly, usually with

some variation.

Reuse -Write a set of instructions once and give them a name and then reuse

those instructions as needed throughout your program.

[05] CO1 L2

 (b) Explain the logic and write program using function for finding maximum of 3

numbers.

def max_num(a,b,c):

 if a>b:

 if a>c:

 m=a

 else:

 m=c

 else:

 if b>c:

 m=b

 else:

 m=c

 return m

[05] CO1 L3

m_num = max_num(5,8,9)

print('max number is', m_num)

print('using inbuilt function', max(5,8,9))

max_func.py =====

max number is 9

using inbuilt function 9

2 (a) What is the role of a programmer? List and elaborate on two skills required for a

programmer.

 Solve the problem by analyzing

 Coordinate the use of resources (primary/secondary memory/networked

 connections /IO Devices)

 “Talking to the CPU”

 Stored Instructions : Program

 The act of writing the instructions and ensuring it is correct : Programming

Skills required

Master the language (Python) – the vocabulary and the grammar.

Become familiar with the syntax, the various building blocks of Python, input,

output, sequential execution, repeated execution, reuse.

 Solve the problem – by combining words to form sentences and essentially

craft a story

 -use logic to combine the various building blocks for a particular purpose

[04] CO1 L2

 (b) Write a program print whether a given year is a leap year.

To be a leap year, the year number must be divisible by four – except for end-of-

century years, which must be divisible by 400. This means that the year 2000 was

a leap year, although 1900 was not. 2020, 2024 and 2028 are all leap years.

if (year%4==0 and year%100 !=0) or year%400==0:

 print('leap year')

[OR]

year=int(input('Enter year:'))

leap = False

if year%4==0:

 if year %100==0:

 if year%400 ==0:

 leap=True

 else:

 leap = True

if leap:

 print('Leap year')

else:

 print('Not a leap year')

Output:

Enter year:2000

Leap year

Enter year:1900

Not a leap year

[06] CO1 L3

3 (a) Compare and contrast syntax error, logic error and semantic error with examples. [04] CO1 L2

Syntax Errors : grammatical mistakes, easy to fix

Eg. if x%2 == 0

 print(‘number is even’)

In the above code Python expects a : following the if statement. If it is missing,

it shows a syntax error.

Logic Errors : good syntax, but mistake in the order or the relation of statements

to one another

Eg. Check if number is even

Code :

x=5

if x%2 != 0:

 print(‘Even’)

This is logically wrong.

The correct code is

If x%2 ==0:

 Print(‘Even’)

Semantic Errors : syntactically perfect and logically correct, but the program

just does not do what it is meant to do (most difficult to identify and rectify)

Eg. x=1,000,000,000

Print(x)

(1,0,0,0)

If the programmer wanted to split big numbers, then they should have used _

(underscore). In python a comma treats it as a tuple. If the programmer expected

1000000000 to be printed, and did not know that comma cannot be used to split

large numbers, they will not be able to correct this error.

 (b)

def is_prime(i):

 j=2

 isprime=True

 while j<= i//2: # for j in range(j, i//2+1)

 #print(i,'%',j)

 if i%j==0:

 isprime=False

 break

 j+=1 #remove if using for

 return isprime

m=2

n=50

while m<=n:

 if is_prime(m):

 print(m, end=' ')

 m+=1

Output

======= RESTART: D:/ prime.py =======

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

[06] CO1 L3

4 (a) Differentiate compiler and interpreter.

• An interpreter reads the source code of the program as written by the

programmer, parses the source code, and interprets the instructions on the

fly. Python is an interpreter and when we are running Python interactively

[02]+

[04]

CO1 L2

we can type a line of Python (a sentence) and Python processes it

immediately and is ready for us to type another line of Python.

 A compiler converts the source code in high-level language to low-level

language such as object code that can be used to create an executable

program.

Explain type conversion, math functions using inbuilt functions with code snippets

• When you put an integer and floating point in an expression, the integer is

implicitly converted to a float

• You can control this with the built-in functions int() and float()

>>> print(float(99) / 100)

0.99

>>> i = 42

>>> type(i)

<class 'int'>

>>> f = float(i)

>>> print(f)

42.0

>>> type(f)

<class 'float'>

>>> print(1 + 2 * float(3) / 4 – 5)

-2.5

>>>

Math runctions

• math module has to be imported to use this.

• Creates a module object named math

• Module object contains the functions and variables defined in the module

• To access, specify the name of the module and name of the function

separated by a dot.

>>> import math

>>> decibels = 10*math.log10(5/4)

>>> decibels

0.9691001300805642

>>>

>>> radians =0.3

>>> x=math.sin(radians)

>>> x

0.29552020666133955

>>>

 (b) Write a python program using Exceptions, so that your program handles non-

numeric input gracefully by printing an error message “Error, Please enter numeric

input” and exiting the program

Example Ouput:

Enter Hours: 20

Enter Rate: nine

Error, Please enter numeric input

try:

 hours = int(input('Enter hours:'))

 rate = float(input('Enter rate:'))

except:

[04] CO1 L3

 print('Please enter number input')

except_q.py ==

Enter hours:20

Enter rate:nine

Please enter number input

5 (a) Differentiate break and continue statements with the help of flowchart and code.

• The break statement ends the current loop and jumps to the statement

immediately following the loop

• It is like a loop test that can happen anywhere in the body of the loop

• The continue statement ends the current iteration and jumps to the top of the

loop and starts the next iteration

while True:

 line = input('> ')

 if line == 'done' :

 break

 print(line)

print('Done!')

while True:

 line = raw_input('> ')

 if line[0] == '#' :

 continue

 if line == 'done' :

 break

 print(line)

print('Done!')

[04] CO1 L2

(b) Write a python program using the list items to demonstrate counting, summing and

average of elements using loops. Write appropriate comments and output. Do not

use in-built functions.

items =[2,6,8,9,4,9]

items =[2,6,8,9,4,9]

#demonstrate counting, summing and average of elements using loops

count = 0

total = 0

average =0

for i in items:

 count=count+1 #increment count by 1

 total+=i # add each item to total

average = total/count #calculate average

[06] CO1 L2

print('Count:', count)

print('Total:', total)

print('Average:', average)

demo_loop.py =====

Count: 6

Total: 38

Average: 6.333333333333333

6(a) Evaluate the following expressions:
(i) 3/2*4+3+(10/4)**3-2

3/2*4+3+(10/4)**3-2

= 3/2*4+3+(2.5)**3-2

= 3/2*4+3+15.625-2

=1.5*4+3+15.625-2

= 6.0+3+15.625-2

= 9+15.625-2

= 24.625-2 =22.625

(ii) -17%3

-17 – math.floor(-17/3) * 3 = -17 – (math.floor(-5.67)*3) = -17 – (-6*3) = -17+18=1

(iii) 8%2 + 9//3

0+3 = 3

[03] CO1 L2

(b) Explain concept of conditional alternate execution and chained conditionals using

diagrams and code snippets.

• Sometimes we want to do one thing if a logical expression is true and

something else if the expression is false

• It is like a fork in the road - we must choose one or the other path but not

both

• Alternatives are called branches

x = 4

if x > 2 :

 print('Bigger')

else :

 print('Smaller')

print('All done')

Chained Conditionals – when there are multiple branches.

[07] CO1 L2

if x < 2 :

 print('small')

elif x < 10 :

 print('Medium')

else :

 print('LARGE')

print('All done')

