

Internal Assessment Test 2 – Nov. 2022

		CTATI			al Assess						D	1.			
Su b:	EARNI		INTELLI	GENCEA	.NDMA(CHINI	EL .	Cod	ub le: 18	CS71	Bra	nch :	CS	SE	
Dat e:	01/12/2	022 I	Duration:	90 mins	N	Max Iarks:	50	Sem/So	ec :	7/A	,B,C			OBE	
			Answer any FIVE FULL Questions							MA KS		CO	RB T		
1	a)Discus	a)Discuss the shortcomings of candidate elimination algorithm								[4+	3+	CO2	L3		
l	a) Short	a) Short comings of Candidate Elimination Algorithm										J.	J		
	 least commitment strategy - the algorithm modifies the S and G sets as little as possible when accommodating new examples. performs an exhaustive search of the space of all possible classification rules. does not tolerate any noise: the G and S sets "pass" each other. 									ow.					
	Last col	umn in	date eliming the datas		arget at			iiiig saii	npies g		JW.				
		Sunny	Warm	Normal	Strong	Warm	S		Yes						
	2	Sunny	cold	high	Strong	Warm	C	hange	No						
		Sunny	Warm	High	Strong	Warm	S		Yes						
		Rainy Sunny	Cold Warm	High High	Strong Strong	Warm Cool			No Yes						
	'?', '?'], The mo Step 2 The mo 'Norma 'Same'] The mo Step 3 The mo '?', '?', '"	The most generic is: [['?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?']], ['?', '?'], ['?', '?'], ['?							'?', '?',						
	Step 4 The mo	ost gene ?', '?', '?	eific is : ['S eric is : [['], ['?', '?',	'Sunny', '?	", '?', '?',	'?', '?'],	['?',	'Warm',	'?', '?',						

2	Construct a de	cision	tree from	the following training dataset.	[10]	CO2	L3
				te 3 Traget Class			
	1 T	Т	Α	Yes			
	2 F	F	В	Yes			
	3 T	Т	С	No			
	4 F	Т	Α	Yes			
	5 T	F	С	No			
	6 T	F	В	Yes			
	7 T	Т	С	No			
	8 F	Т	Α	Yes			
	9 F	F	С	No			
	10 F	Т	В	No			
	The Decision 7	Ггее					
	For Attribute 1	:					
	S _t [2+, 3-] So, I	$E(S_t) =$: -2/5* los	$2(2/5) - 3/5 * \log 2(3/5) = 0.971$			
	$S_f[3+,2-]$ So, E			3-(2,0) 2,0 108-(0,0) 015/1			
	51[51,2]50, E	(51) –	0.771				
	Info Gain = 1-						
	For Attribute 2:						
	$S_t[3+, 3-]$ So, I						
	$S_{\rm f}[2+,2-]$ So, E						
	Info Gain = 1-						
	F 11						
	For attribute 3:						
	$S_a[3+, 0-] So, 1$	$E(S_a) =$	=0				
	$S_b[2+,1-]$ So, E	$E(S_b) =$	$-2/3*\log$	$2(2/3) - 1/3*\log 2(1/3) = 0.9183$			
	$S_{c}[0+,4-]$ So, E	$E(S_c) =$: 0				
	, , ,	/					
	Info Gain = 1 -	_0_3	/10 * 0 9	183 – 0.7245			
	Now,	0 3	/10 0.7.	103 – 0.72 13			
	_			45 is the highest to be the root node. And Info Gain			
	of Attribute 1 i						
	After calculation	ng Ent	ropy and	Information Gain the decision tree is (ID3).			
				── Target=Yes			
		Α					
				O Target=Yes			
	4	В	Access to a	. 0			
	Attribute3		Attribute	22			
				☐ Target=No			
		С					
				── Target=No			

	iteration. The sample is randomly shuffled and selected for performing the iteration.			
	SGD algorithm:			
	for i in range (m) :			
	$\theta_j = \theta_j - \alpha \left(\hat{y}^i - y^i \right) x_j^i$			
5	a) List the appropriate problems for neural network learning.	[4+6]	CO1	L1
	b) Show the derivation of back propagation training rule for output unit	. ,		
	weights.			
	a) Appropriate Problems for NN Learning			
	1. Instances are represented by many attribute-value pairs.			
	2. The target function output may be discrete-valued, real-valued, or a vector of several real-valued or discrete-valued attributes.			
	3. The training examples may contain errors. • Long training times are acceptable.			
	4. Fast evaluation of the learned target function may be required.			
	5. The ability of humans to understand the learned target function is not			
	important.			
	b) derivation of Back propagation training rule for output units weight:			
	First Total Error $E_{total} = \sum \frac{1}{2} (target - output)^2$			
	Now calculating backward propagation error: 1. Adjusting weights between Output layer and hidden Layer For new weight of w ₅ : Using partial differentiation			
	$\frac{\partial E_{total}}{\partial w_5}$ is read as "the partial derivative of E_{total} with respect to w_5 ". You			
	can also say "the gradient with respect to w_5 ".			
	By applying the chain rule:			
	$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_5}$			
	Partial derivative of logistic function = 1 minus output $Out_{O1} = 1/(1+e^{-neto1})$ =			
	$out_{o1} = \frac{1}{1 + e^{-net_{o1}}}$			
	Putting all together			
	$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_5}$			
6	a) Explain Naïve Bayes classifier.	[4+6]	CO2	L3
	b) The data set given shows whether an equipment is faulty or not.			
		<u>I</u>	<u>I</u>	<u> </u>

Color	Weight	Smoke	Faulty
Red	Heavy	No	Yes
Yellow	Light	No	No
Red	Heavy	Yes	Yes
Yellow	Heavy	Yes	Yes
Blue	Light	No	Yes
Yellow	Light	No	No
Blue	Heavy	Yes	No
Red	Heavy	No	Yes
Blue	Heavy	No	Yes
Yellow	Light	Yes	Yes

Using this "Equipment data set", decide the class of the equipment with <color=Yellow, Weight=Heavy, Smoke=No> using naive Bayes classifier

a) Naïve base classifier:

Naive Bayes classifiers are a collection of classification algorithms based on **Bayes' Theorem**. It is not a single algorithm but a family of algorithms where all of them share a common principle, i.e. every pair of features being classified is independent of each other.

Bayes Theorem: P(A|B) = P(B|A).P(A) / P(B)

P(A|B): Probability of A given that event B already occur P(B|A): Probability of B given that event A already occur

b)

Probability for Faulty Yes = 7/10 = 0.7

Probability for Faulty No = 3/10 = 0.3

To decide the class of <color=Yellow, Weight=Heavy, Smoke=No> Using Bayes Theorem P(A|B) = P(B|A).P(A) / P(B)

 Color
 Yes
 No

 Red
 3/7
 0/3

 Yellow
 2/7
 2/3

Blue 2/7 1/3 Weight Yes No

Heavy 5/7 1/3 Light 2/7 2/3

Smoke Yes No Yes 3/7 1/3 No 4/7 2/3

Now, P(Yes| color=Yellow, Weight = Heavy, Smoke = No) = P(Yes)*(P color=Yellow|Yes)* P(Weight=Heavy | Yes)* P(Smoke=No | Yes) = 7/10*2/7*5/7*4/7 = 0.0816

And P(No| color=Yello, Weight = Heavy, Smoke = No) =

P(No)*(P color=Yellow|No)* P(Weight=Heavy | No)* P(Smoke=No|No)

=3/10*2/3*1/3*2/3=0.044

So.

P(Yes color=Yello, Weight = Heavy, Smoke = No) > P(No color=Yello, Weight = Heavy, Smoke = No)		
And thus class predicted is "Yes"		