Internal Assessment Test II–Dec 2022-Solution

Sub:	Data Structures and Applications SubCode: 21CS32					anch: ISE		
Date:	26.12.2022 Duration: 90min's Max	Sem/Sec:	III A, B &C				OBE	
	Answer any FIVE FU					RKS		RBT
1	Give the node structure of a single linked to perform the following operation, a. create list b. Insert node at the end c. Delete the first node d. Display all the nodes	list of integ	ers and write	e the C functi	on	10	CO3	L2
	Answer:							
	Linked List Second Second	I struct on a struct of st	thend; thend;	ment is %d". heed- ("); lost) lost; lost				

	<pre>} } }</pre>			
3a)	Convert the following Infix expression to prefix expression using stack method along with clear steps. Expression: (A+B)+C-(D-E)^F Solution: 301 (A+0) + C + (O-E)^ f SKPO	5	CO2	L3
	Reverse the obtained Postfin exp			

REAR =-1 and FRONT=0 After 1 insertion REAR=0 and insert item 10 into queue. Now insert 20 into queue REAR = 1 and FRONT=0 20 Suppose now we delete one item from queue, as we know that deletion can be done from FRONT end in Now, REAR = 1 and FRONT=1 Now we insert 30, 40 and 50 into queue respectively. REAR = 2 and FRONT=1 20 30 REAR =3 and FRONT=1 30 20 40 REAR = 4 and FRONT=1 20 30 #include <stdio.h> #define MAX 5 //Declaration of Queue typedef struct queue int front ; int rear int ele[MAX] }Queue; //Intialze Queue void init(Queue *q) q->rear = -1;q->front = 0;//To check Queue is full or not int isFull(Queue *q) int full=0; if $(q\rightarrow rear == MAX -1)$ full = 1;return full; //To check Queue is empty or not int isEmpty(Queue *q) int empty=0; if(q->front == q->rear+1) empty = 1;

Consider the implementation :- If there is 5 items in a Queue

```
return empty;
//Insert item into queue
void insertQueue(Queue *q,int item)
   if( isFull(q) )
        printf("\nQueue Overflow");
        return;
   q->ele[++(q->rear)] = item;
   printf("\nInserted item : %d",item);
//Delete item from queue
int deleteQueue(Queue *q, int * item)
    if( isEmpty(q) )
        printf("\nQueue Underflow");
        return -1;
    *item = q->ele[(q->front)++];
    return 0;
int main()
   int item = 0;
   Queue q;
   init(&q);
   insertQueue(&q,10);
   insertQueue(&q,20);
   insertQueue(&q,30);
   insertQueue(&q,40);
   insertQueue(&q,50);
   insertQueue(&q,60);
   if( deleteQueue( &q, &item ) == 0 )
        printf("\nDeleted item : %d",item);
    if( deleteQueue( &q, &item ) == 0 )
        printf("\nDeleted item : %d",item);
    if ( deleteQueue( &q, &item ) == 0 )
        printf("\nDeleted item : %d",item);
    if( deleteQueue( &q, &item ) == 0 )
        printf("\nDeleted item : %d",item);
    if( deleteQueue( &q, &item ) == 0 )
        printf("\nDeleted item : %d",item);
    if( deleteQueue( &q, &item ) == 0 )
        printf("\nDeleted item : %d",item);
   printf("\n");
    return 0;
```

How to overcome Linear Queue Drawvacks

•We can solve this problem by joining the front and rear end of a queue to make the queue as a circular queue.

•Circular queue is a linear data structure. It follows FIFO principle.

	•In circular queue the last node is connected back to the first node to make a circle									
5	With diagrammatic representation explain the various operations of Dequeue along with the proper C functions. Solution:					10	CO2	L2		
	Deque or Double Ended Queue is a generalized version of Queue data structure that allows insert and delete at both ends. Operations on Deque: Mainly the following four basic operations are performed on queue: insertFront(): Adds an item at the front of Deque. insertLast(): Adds an item at the rear of Deque. deleteFront(): Deletes an item from the front of Deque. deleteLast(): Deletes an item from the rear of Deque.									
	Insertion at the front end:									
	0	1	2	3	4					
	7	3	1			front = 0				
	front		rear							
	0	1	2	3	4					
	7	3	1			So, reinitialize it, front = n - 1 last index)				
			rear		front					
	0	1	2	3	4	Now, add the new key				
	7	3			5	to a[front]				
			rear		front					
	Insertion at the rear end									
	7	3	2 3	4						
	front	re	↑							
	0		2 3	4	W					
	1	3	1		Increase the rear by 1					
	front 0	1	rear	4						
	7	3	1 5			Now, add the new key to a[rear]				
	front		rear							
	Deletion at the front end									


```
int main()
  while(1)
   printf("\n Menu");
   printf("\n 1.Insert from Front:");
   printf("\n 2.Insert from Rear:");
   printf("\n 3.Delete from Front:");
   printf("\n 4.Delete from Rear:");
   printf("\n 5.Display");
   printf("\n 6.Exit \n");
   printf("Enter the choice \n");
   scanf("%d",&choice);
  switch(choice)
  case 1:
  insertfront();
  break;
  case 2:
  insertrear();
  break;
  case 3:
  deletefront();
  break;
```

```
case 4:
  deleterear();
  break;
  case 5:
  display();
  break;
  case 6:
  exit(0);
  default:
  printf("\n Invalid Choice");
  getch();
  break;
  }
  }
  return 0;
void insertfront()
  if(front==0)
  printf("\n Queue is FULL");
  }
  else
```

```
front=front-1;
  printf("\n Enter a no:");
  scanf("%d",&item);
  deque[front]=item;
void insertrear()
  if(rear==MAX-1)
  printf("\n Queue is FULL");
  }
  else
  rear=rear+1;
  printf("\n Enter a no.:");
  scanf("%d",&item);
  deque[rear]=item;
void deletefront()
  if(front==MAX)
   printf("\n Queue is EMPTY");
```

```
else
  {
  item=deque[front];
  front=front+1;
  printf("\n No. deleted is %d",item);
void deleterear()
  if(rear==-1)
   printf("\\ \  \  Queue \  is \  EMPTY");
  else
  item=deque[rear];
  rear=rear-1;
  printf("\n No. deleted is %d",item);
  }
void display()
int i;
printf("\n The Queue is::");
for(i=front;i<=rear;i++)
 printf("%d \t ", deque[i]);
```

				1
	}			
	h			
6	Elaborate on solving Towers of Honai problem using recursion along with	10	CO2	L2
	examples, C functions and a recursion tree.			
	Solution:			
	Tower of Hanoi is a mathematical puzzle where we have three rods			
	(A, B, and C) and N disks. Initially, all the disks are stacked in			
	decreasing value of diameter i.e., the smallest disk is placed on the			
	top and they are on rod A. The objective of the puzzle is to move			
	the entire stack to another rod (here considered C), obeying the			
	following simple rules:			
	Only one disk can be moved at a time. Each move consists of taking the upper disk from one of the			
	 Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack i.e. a disk can only 			
	be moved if it is the uppermost disk on a stack.			
	 No disk may be placed on top of a smaller disk. 			
	10sh			
	A B C A B C			
	2			
	A B C A B C			
	*			
	A B C A B C			
	Image illustration for 3 disks			
	void towerOfHanoi(int n, char from_rod, char to_rod,			
	<pre>char aux_rod) {</pre>			
	if (n == 0) {			
	return; }			
	towerOfHanoi(n - 1, from_rod, aux_rod, to_rod);			
	<pre>cout << "Move disk " << n << " from rod " << from_rod</pre>			
	towerOfHanoi(n - 1, aux_rod, to_rod, from_rod);			
	}			
	// Driver code			
	<pre>int main()</pre>			
	int $N = 3$;			
	// A, B and C are names of rods			
	towerOfHanoi(N, 'A', 'C', 'B'); return 0;			
		-		

Faculty Signature CCI Signature HOD Signature