| USN |  |  |  |  |  |
|-----|--|--|--|--|--|

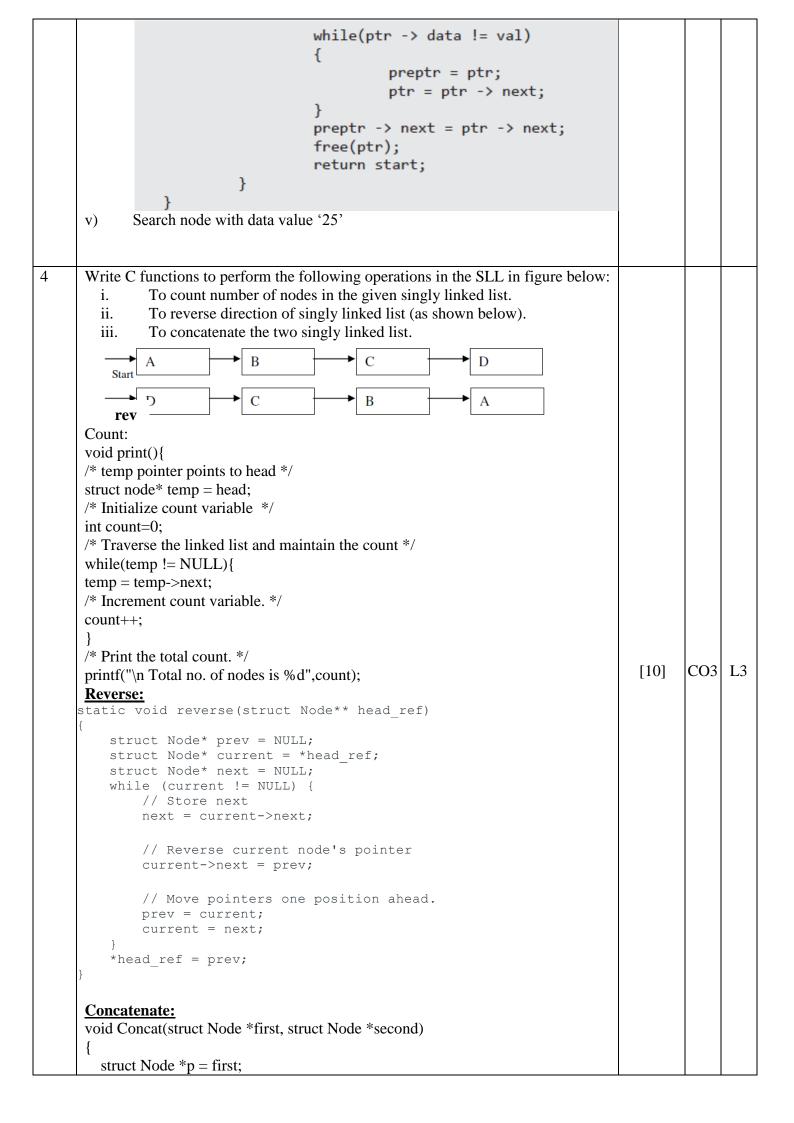


|       | Internal Assessment Test 2 – Dec 2022                                                                                                                                                                                                                                                                                                                                                                                 | Residualitie | TH A+ GRADE II |         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|---------|
| Sub:  | Data Structures and ApplicationsSub Code:21CS32Bit                                                                                                                                                                                                                                                                                                                                                                    | anch: CSE    |                |         |
| Date: | 27 /12 /2022         Duration:         90 mins         Max Marks:         50         Sem / Sec:         III(A,B &                                                                                                                                                                                                                                                                                                     | : C)         | OB             | E       |
|       | Answer any FIVE FULL Questions                                                                                                                                                                                                                                                                                                                                                                                        | MARK<br>S    | CO             | RB<br>T |
| 1 (a) | Consider the following sequence of operations on an empty stack. push(54);<br>push(52); pop(); push(55); push(62); $s = pop()$ ; Consider the following<br>sequence of operations on an empty queue. enqueue(21); enqueue(24);<br>dequeue(); enqueue(28); enqueue(32); $q = dequeue()$ .<br>Demonstrate the above sequence of operation on a stack and queue with a help                                              | [05]         | CO2            |         |
|       | of a neat diagram and predict the value of $s + q$                                                                                                                                                                                                                                                                                                                                                                    |              |                |         |
| (b)   | Write a note on Dequeue and Priority Queues.                                                                                                                                                                                                                                                                                                                                                                          | [05]         | CO2            | L2      |
| 2     | List the advantages of circular queue over ordinary queue? With suitable C-<br>functions simulate the working of circular Queue of integers using Arrays.<br>Suppose a queue is maintained by a circular array queue with N=12 memory<br>cells. Find the number of elements in the queue if<br>i) FRONT =4 REAR =8<br>ii) FRONT =10 REAR = 3<br>iii) FRONT =5 REAR =6 and then two elements are deleted.              |              | CO2            | L3      |
| 3     | <ul> <li>Write C functions to perform the following operations in a SLL:</li> <li>i) Assume a four node single linked list with data values 15,25,40,50</li> <li>ii) Insert a node with data value '60' at the end of the list.</li> <li>iii) Insert a node with data value 30 in between the nodes 25 and 40</li> <li>iv) Delete a node with data value '40'</li> <li>v) Search node with data value '25'</li> </ul> | [10]         | CO1            | L3      |
| 4     | Write C functions to perform the following operations in the SLL in figure below:<br>i. To count number of nodes in the given singly linked list.<br>ii. To reverse direction of singly linked list (as shown below).<br>iii. To concatenate the two singly linked list.<br>$A \rightarrow B \rightarrow C \rightarrow D$<br>$Start D \rightarrow C \rightarrow B \rightarrow A$                                      | [10]         | CO3            | L3      |
|       | <ul> <li>Describe the doubly linked list with advantages and disadvantages. Write necessary</li> <li>C- functions to perform the following: <ul> <li>iv. Insert a node at the front of DLL</li> <li>v. Delete a node from the front of DLL</li> <li>vi. Insert a node from a DLL before a node with a given value.</li> <li>vii. Delete a node from a DLL before a node with a given value.</li> </ul> </li> </ul>    | [10]         | CO3            | L2      |
| 6     | Demonstrate the various operations performed in Linked Queue with suitable C-function.                                                                                                                                                                                                                                                                                                                                | [10]         | CO3            | L2      |

## PO Mapping

|     | Course Outcomes | Modules<br>covered | P01 | P02 | PO3 | P04 | P05 | P06 | PO7 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 | PSO4 |
|-----|-----------------|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
| CO1 |                 |                    |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| CO2 |                 |                    |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| CO3 |                 |                    |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| CO4 |                 |                    |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |
| CO5 |                 |                    |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |

| COGNITIVE<br>LEVEL | REVISED BLOOMS TAXONOMY KEYWORDS                                                                                                              |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| L1                 | List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.                          |
| L2                 | summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend                           |
| L3                 | Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.            |
| L4                 | Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.                                       |
| L5                 | Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize. |


| PF   | PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)                                   |            |                                     |    |  |  |  |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------|------------|-------------------------------------|----|--|--|--|--|--|--|--|--|
| PO1  | Engineering knowledge                                                                    | 0          | No Correlation                      |    |  |  |  |  |  |  |  |  |
| PO2  | Problem analysis                                                                         | 1          | Slight/Low                          |    |  |  |  |  |  |  |  |  |
| PO3  | Design/development of solutions                                                          | 2          | Moderate/<br>Medium                 |    |  |  |  |  |  |  |  |  |
| PO4  | Conduct investigations of complex problems                                               | 3          | 3 Substantial/<br>High              |    |  |  |  |  |  |  |  |  |
| PO5  | Modern tool usage                                                                        | PO11       | Project management and finance      |    |  |  |  |  |  |  |  |  |
| PO6  | The Engineer and society                                                                 | PO12       | Life-long learning                  |    |  |  |  |  |  |  |  |  |
| PSO1 | Develop applications using differe                                                       | ent stacks | s of web and programming technologi | es |  |  |  |  |  |  |  |  |
| PSO2 | Design and develop secure, parallel, distributed, networked, and digital systems         |            |                                     |    |  |  |  |  |  |  |  |  |
| PSO3 | Apply software engineering methods to design, develop, test and manage software systems. |            |                                     |    |  |  |  |  |  |  |  |  |
| PSO4 | Develop intelligent applications for business and industry                               |            |                                     |    |  |  |  |  |  |  |  |  |



| Answer any FIVE FULL Questions         1 (a)       Consider the following sequence of operations on an empty stack. push(54);         push(52); pop(); push(55); push(62); $s = pop()$ ; Consider the following sequence of operations on an empty queue. enqueue(21); enqueue(24); dequeue(); enqueue(28); enqueue(32); q = dequeue().         Demonstrate the above sequence of operation on a stack and queue with a help of a neat diagram and predict the value of $s + q$ Image: the above sequence of operation on a stack and queue with a help of a neat diagram and predict the value of $s + q$ Image: the above sequence of operation on a stack and queue with a help of a neat diagram and predict the value of $s + q$ Image: the above sequence of operation on a stack and queue with a help of a neat diagram and predict the value of $s + q$ Image: the above sequence of operation on a stack and queue with a help of a neat diagram and predict the value of $s + q$ Image: the above sequence of operations on an empty sequence of the value of $s + q$ Image: the above sequence of operation on a stack and queue with a help of a neat diagram and predict the value of $s + q$ Image: the value of $s + q$ Image: the above sequence of operation on a stack and queue with a help of a neat diagram and predict the value of $s + q$ Image: the value of $s + q$ Image: the above sequence of operation on a stack and queue with a help of a neat diagram and predict the value of $s + q$ Image: the value of $s + q$ Image: the above sequence and the predict the value of $s + q$ Image: the value of $s + q$ <tr< th=""><th></th><th></th><th></th><th></th><th>Internal</th><th>Asses</th><th>sment Test</th><th>2 – Dec 2022</th><th>(Solu</th><th>tion)</th><th></th><th>ACCR</th><th>IDITED WIT</th><th>H A+ GRADE B</th><th>THAAC 0</th></tr<>                                                                                                                                                                                               |                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     | Internal                               | Asses                          | sment Test                                        | 2 – Dec 2022                        | (Solu        | tion)                          |           | ACCR | IDITED WIT | H A+ GRADE B | THAAC 0 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|--------------------------------|---------------------------------------------------|-------------------------------------|--------------|--------------------------------|-----------|------|------------|--------------|---------|
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sub:                           | Data S                                                                                    | Structures and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Applicatio                                          | ıs                                     |                                |                                                   | Sub C                               | ode:         | 21CS32                         | Bra       | nch: | CSE        |              |         |
| Answer any PIVE FULL Questions       S       -         1 (a)       Consider the following sequence of operations on an empty stack, push(54); push(52); pop(); push(52); graque(23); qraqueq(23); qraqueq(24); qraqueq(24); qraqueq(24); qraqueq(24); qraqueq(24); qraqueq(23); qraqqraqraqueq(23); qraqueq(23); qraqueq(23); qraqr                                             |                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                        |                                | Solut                                             | ion                                 |              |                                |           |      |            |              |         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Answe                                               | er any F                               | IVE                            | FULL Que                                          | <u>stions</u>                       |              |                                |           |      |            | CO           | RB<br>T |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (a)                          | pusł<br>sequ<br>dequ<br>Den                                                               | n(52); pop(<br>nence of content of c | (); push(5<br>operations<br>ueue(28);<br>e above so | 5); pus<br>on an<br>enqueue<br>equence | sh(62<br>n em<br>e(32)<br>of o | 2); $s = point pty queue ; q = deque peration or$ | op(); Consi<br>e. enqueue<br>eue(). | der<br>(21); | the followi<br>enqueue(2       | ng<br>4); |      |            |              |         |
| EQ(21) $21$ $55$ $55$ $55$ $51$ $1051$ $CO2$ $1$ $EQ(21)$ $21$ $24$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ <td></td> <td colspan="12">Push(54)         Push(52)         Pop()         Push(55)         Push(62)         s=Pop()</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | Push(54)         Push(52)         Pop()         Push(55)         Push(62)         s=Pop() |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                        |                                |                                                   |                                     |              |                                |           |      |            |              |         |
| 52 $55$ $55$ $55$ $55$ $54$ $54$ $54$ $54$ $54$ $54$ $EQ(21)$ $21$ $24$ $1$ $1$ $EQ(24)$ $21$ $24$ $1$ $1$ $EQ(28)$ $24$ $28$ $32$ $DQ(0=24)$ $28$ $32$ $DQ(0=24)$ $28$ $32$ $DQ(0=24)$ $28$ $32$ $DQ(0=24)$ $28$ $32$ $Answer = 86$ $1$ (b) Write a note on Dequeue and Priority Queues.The deque stands for Double Ended Queue. Deque is a linear data structure where<br>the insertion and deletion operations are performed from both ends. We can say that<br>deque is a generalized version of the queue.Though the insertion and deletion in a deque can be performed on both ends, it does<br>not follow the FIFO rule. The representation of a deque is given as follows -Types of deque $[05]$ CO2 $CO2$ $I$ $O$ Input restricted queue $O$ $O$ Uuput restricted queue $O$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>62</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                        |                                |                                                   | 62                                  |              |                                |           |      |            |              |         |
| 54       54       54       54       54         EQ(21)       21       24       1       1         EQ(24)       21       24       1       1         EQ(28)       24       28       32       1         DQ(0=24)       28       32       32       1         Answer = 86             (b) Write a note on Dequeue and Priority Queues.        The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and deletion operations are performed from both ends. We can say that deque is a generalized version of the queue.           Though the insertion and deletion in a deque can be performed on both ends, it does not follow the FIFO rule. The representation of a deque is given as follows -        [05]       CO2       I         Types of deque                0       Input restricted queue               0       Uptut restricted queue               0       Uptut restricted queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52                                                  |                                        |                                | 55                                                |                                     | 55           |                                |           |      |            |              |         |
| EQ(21)       21       1       1       1         EQ(24)       21       24       1       1         DQ()       24       28       1       1       1         EQ(23)       24       28       32       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                                                                                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | 54                                     |                                |                                                   |                                     |              |                                |           | [0   | 5]         | CO2          | L3      |
| EQ(24)       21       24       1 $DQ()$ 24       1       1         EQ(28)       24       28       32 $EQ(32)$ 24       28       32 $DQ()=24$ 28       32         Answer = 86       1       1       28       32         (b)       Write a note on Dequeue and Priority Queues.       The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and deletion operations are performed from both ends. We can say that deque is a generalized version of the queue.       Though the insertion and deletion in a deque can be performed on both ends, it does not follow the FIFO rule. The representation of a deque is given as follows -       [05]       CO2       I         Types of deque       .       .       .       .       .       .         Output restricted queue       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .       .       .       .         .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | l                                                                                         | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51                                                  | 51                                     |                                | 51                                                | 51                                  | 51           |                                |           |      |            |              |         |
| EQ(24)       21       24       Image: constraint of the second                   |                                |                                                                                           | <b>FO(21)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                  |                                        |                                |                                                   |                                     |              |                                |           |      |            |              |         |
| EQ(28)       24       28         EQ(32)       24       28       32         DQ()=24       28       32         Answer = 86         (b)       Write a note on Dequeue and Priority Queues.         The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and deletion operations are performed from both ends. We can say that deque is a generalized version of the queue.         Though the insertion and deletion in a deque can be performed on both ends, it does not follow the FIFO rule. The representation of a deque is given as follows -         Types of deque         There are two types of deque -         •       Input restricted queue         •       Output restricted queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                        | 24                             |                                                   |                                     |              |                                |           |      |            |              |         |
| EQ(32)       24       28       32         DQ()=24       28       32         Answer = 86         (b)       Write a note on Dequeue and Priority Queues.         The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and deletion operations are performed from both ends. We can say that deque is a generalized version of the queue.         Though the insertion and deletion in a deque can be performed on both ends, it does not follow the FIFO rule. The representation of a deque is given as follows -         Types of deque       [05]       CO2         There are two types of deque - <ul> <li>Output restricted queue</li> <li>Output restricted queue</li> <li>Output restricted queue</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                        |                                |                                                   |                                     |              |                                |           |      |            |              |         |
| DQ0=24       28       32         Answer = 86       (b)       Write a note on Dequeue and Priority Queues.         The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and deletion operations are performed from both ends. We can say that deque is a generalized version of the queue.         Though the insertion and deletion in a deque can be performed on both ends, it does not follow the FIFO rule. The representation of a deque is given as follows -         Types of deque       [05]         CO2       I         O       Input restricted queue         Output restricted queue       Output restricted queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                        | _                              |                                                   |                                     | 22           |                                |           |      |            |              |         |
| Answer = 86         (b)       Write a note on Dequeue and Priority Queues.         The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and deletion operations are performed from both ends. We can say that deque is a generalized version of the queue.         Though the insertion and deletion in a deque can be performed on both ends, it does not follow the FIFO rule. The representation of a deque is given as follows -         Types of deque       [05]         CO2       I         O       Input restricted queue         O       Output restricted queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                   |                                        | 24                             |                                                   |                                     |              |                                |           |      |            |              |         |
| (b)       Write a note on Dequeue and Priority Queues.         The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and deletion operations are performed from both ends. We can say that deque is a generalized version of the queue.         Though the insertion and deletion in a deque can be performed on both ends, it does not follow the FIFO rule. The representation of a deque is given as follows -         Types of deque       [05]         CO2       I         There are two types of deque -       0         Input restricted queue       0         Output restricted queue       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | Ano                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                        |                                |                                                   |                                     |              |                                |           |      |            |              |         |
| The deque stands for Double Ended Queue. Deque is a linear data structure where the insertion and deletion operations are performed from both ends. We can say that deque is a generalized version of the queue.       Image: Colored and the colored | (b)                            |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dequeue                                             | and Pri                                | ority                          | Oueues.                                           |                                     |              |                                |           |      |            |              |         |
| Types of deque       There are two types of deque -         • Input restricted queue       • Output restricted queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | the ins<br>deque<br>Thoug                                                                 | ertion and<br>is a general<br>h the insert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | deletion o<br>lized versi<br>ion and de             | peration<br>on of th<br>eletion i      | ns are<br>ne que<br>n a d      | e performed<br>eue.<br>leque can b                | l from both<br>e performed          | ends<br>d on | s. We can say<br>both ends, it | y that    |      | 51         |              |         |
| <ul> <li>Input restricted queue</li> <li>Output restricted queue</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Types of deque                 |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                        |                                |                                                   |                                     |              |                                |           | ĮŪ   | 5]         | 02           | L2      |
| • Output restricted queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | There are two types of deque - |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                        |                                |                                                   |                                     |              |                                |           |      |            |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | 0                                                                                         | Input restr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ricted que                                          | ie                                     |                                |                                                   |                                     |              |                                |           |      |            |              |         |
| Input restricted Queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 0                                                                                         | Output res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stricted qu                                         | eue                                    |                                |                                                   |                                     |              |                                |           |      |            |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | Input 1                                                                                   | restricted Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ueue                                                |                                        |                                |                                                   |                                     |              |                                |           |      |            |              |         |
| In input restricted queue, insertion operation can be performed at only one end,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | In inp                                                                                    | ut restricte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d queue,                                            | insertio                               | n op                           | eration car                                       | i be perfori                        | ned          | at only one                    | end,      |      |            |              |         |

|   | while de                                                                                                                              | eletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | can t                                                                             | be per                                                            | forme                                                                                           | d fron                                                                   | n both                                                                              | ends                                                                                      |                                                                                                |                                                                                        |                                                                                      |                                                                      |                                                                                           |                                    |      |     |    |
|---|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|------|-----|----|
|   |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                   |                                                                                                 |                                                                          |                                                                                     |                                                                                           |                                                                                                |                                                                                        |                                                                                      |                                                                      |                                                                                           |                                    |      |     |    |
|   | Output                                                                                                                                | restrict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ted Q                                                                             | ueue                                                              |                                                                                                 |                                                                          |                                                                                     |                                                                                           |                                                                                                |                                                                                        |                                                                                      |                                                                      |                                                                                           |                                    |      |     |    |
|   | In outp<br>while in                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                   |                                                                                                 |                                                                          |                                                                                     |                                                                                           |                                                                                                | e perf                                                                                 | ormeo                                                                                | lato:                                                                | nly one                                                                                   | end,                               |      |     |    |
|   | A<br>based<br>values<br>values<br>In a pr<br>with it<br>position<br>eleme<br>inserted<br>priorit<br>There<br>using<br>metho<br>choice | on the are to a construct on the second seco | y qua<br>y qua<br>en y<br>sed a<br>th a<br>ar th<br>ue n<br>ever<br>ray,<br>s its | eue,<br>ou a<br>on it<br>high<br>e fro<br>nay b<br>ral w<br>linko | ity varetrie<br>each<br>dd an<br>s prio<br>prio<br>ont of<br>oe ins<br>ays te<br>ed lis<br>adva | eler<br>eler<br>n ele<br>ority<br>the<br>serte<br>o im<br>t, he<br>intag | s. Ele<br>befo<br>nent<br>ment<br>value<br>queu<br>d nes<br>plem<br>ap, o<br>ges an | has a to t<br>t to t<br>ie. For<br>e to a<br>ie, w<br>ar the<br>nent a<br>or bin<br>nd di | ts w<br>leme<br>a pri-<br>he qu<br>or ex<br>a pri-<br>chile<br>e bac<br>a pri-<br>nary<br>sadv | th h<br>nts v<br>ority<br>ieue<br>amp<br>ority<br>an e<br>k.<br>ority<br>searc<br>anta | igher<br>with<br>valu<br>, it is<br>le, if<br>queu<br>leme<br>queu<br>ch tre<br>ges, | e ass<br>inse<br>you<br>ne, it<br>nt wi<br>ne, in<br>ee. Ea<br>and t | r prior<br>sociate<br>erted ir<br>add ar<br>may b<br>ith a lo<br>ncludir<br>ach<br>he bes | rity<br>ed<br>n a<br>n<br>pe<br>ow |      |     |    |
| 2 | functio                                                                                                                               | ons sim<br>se a q<br>Find th<br>FROM<br>FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nulate<br>ueue<br>e nun<br>NT =4<br>NT =1                                         | the w<br>is ma<br>ber o<br>REA                                    | orking<br>aintain<br>f elem<br>AR =8<br>AR =                                                    | g of c<br>ned by<br>nents i                                              | ircula<br>y a ci<br>in the                                                          | r Que<br>rcular<br>queue                                                                  | ue of array                                                                                    | ntege<br>v que                                                                         | rs usii                                                                              | ng Arr<br>h N=                                                       | suitable<br>ays.<br>12 men                                                                |                                    |      |     |    |
|   |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                   |                                                                                                 | F                                                                        |                                                                                     |                                                                                           |                                                                                                | R                                                                                      |                                                                                      |                                                                      |                                                                                           |                                    | [10] | CO2 | L3 |
|   |                                                                                                                                       | Q-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |                                                                   |                                                                                                 |                                                                          |                                                                                     |                                                                                           |                                                                                                |                                                                                        |                                                                                      |                                                                      |                                                                                           |                                    | r ]  |     | -  |
|   |                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                 | 2                                                                 | 3<br>R                                                                                          | 4                                                                        | 5                                                                                   | 6                                                                                         | 7                                                                                              | 8                                                                                      | 9                                                                                    | 10<br>F                                                              | 11                                                                                        |                                    |      |     |    |
|   |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                                                 |                                                                   | 1                                                                                               | 1                                                                        | 1                                                                                   | 1                                                                                         | 1                                                                                              | 1                                                                                      | _1                                                                                   | 1-                                                                   | ]                                                                                         |                                    |      |     |    |
|   |                                                                                                                                       | <b>Q-3</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                 | 2                                                                 | 3                                                                                               | 4                                                                        | 5                                                                                   | 6                                                                                         | 7                                                                                              | 8                                                                                      | 9                                                                                    | 10                                                                   | 11                                                                                        |                                    |      |     |    |
|   |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                   |                                                                                                 |                                                                          | F                                                                                   | R                                                                                         |                                                                                                |                                                                                        |                                                                                      |                                                                      |                                                                                           |                                    |      |     |    |
|   |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   |                                                                   |                                                                                                 |                                                                          |                                                                                     |                                                                                           |                                                                                                |                                                                                        |                                                                                      |                                                                      |                                                                                           |                                    |      |     |    |
| 3 | Write<br>i)<br>ii)                                                                                                                    | Assu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | me a f                                                                            | four n                                                            |                                                                                                 | ngle l                                                                   | inked                                                                               | list w                                                                                    | ith da                                                                                         | ta val                                                                                 | ues 15                                                                               | ,25,4(                                                               | ),50                                                                                      |                                    | [10] | CO1 | L3 |

```
Insert a node with data value 30 in between the nodes 25 and 40
iii)
       Delete a node with data value '40'
iv)
       Search node with data value '25'
v)
       Assume a four node single linked list with data values 15,25,40,50
i)
       Insert a node with data value '60' at the end of the list.
ii)
         struct node *insert end(struct node *start)
         {
                   struct node *ptr, *new_node;
                   int num;
                   printf("\n Enter the data : ");
                   scanf("%d", &num);
                   new node = (struct node *)malloc(sizeof(struct no
                   new_node -> data = num;
                   new_node -> next = NULL;
                   ptr = start;
                   while(ptr -> next != NULL)
                   ptr = ptr -> next;
                   ptr -> next = new_node;
                   return start;
         }
iii)
       Insert a node with data value 30 in between the nodes 25 and 40
        struct node *insert_after(struct node *start)
        {
                 struct node *new_node, *ptr, *preptr;
                 int num, val;
                 printf("\n Enter the data : ");
                scanf("%d", &num);
                 printf("\n Enter the value after which the data has to be inserted
                 scanf("%d", &val);
                 new_node = (struct node *)malloc(sizeof(struct node));
                new node -> data = num;
                ptr = start;
                preptr = ptr;
                while(preptr -> data != val)
                 {
                         preptr = ptr;
                         ptr = ptr -> next;
                 }
                 preptr -> next=new_node;
                new_node -> next = ptr;
                 return start;
        }
       Delete a node with data value '40'
iv)
        struct node *delete_node(struct node *start)
        {
                 struct node *ptr, *preptr;
                 int val;
                 printf("\n Enter the value of the node which has to be delet
                 scanf("%d", &val);
                 ptr = start;
                 if(ptr -> data == val)
                 {
                          start = delete_beg(start);
                          return start;
                 }
                 else
```



```
while (p->next != NULL)
         ł
           p = p - next;
         ł
         p->next = second;
         second = NULL;
       }
5
     Describe the doubly linked list with advantages and disadvantages. Write necessary
     C- functions to perform the following:
         i.
                Insert a node at the front of DLL
                Delete a node from the front of DLL
         ii.
                Insert a node from a DLL before a node with a given value.
         iii.
                Delete a node from a DLL before a node with a given value.
         iv.
         i.
                Insert a node at the front of DLL
                  struct node *insert_beg(struct node *start)
                   {
                            struct node *new node;
                            int num;
                            printf("\n Enter the data : ");
                            scanf("%d", &num);
                            new_node = (struct node *)malloc(sizeof(struct node));
                            new_node -> data = num;
                                 start -> prev = new node;
                                 new_node -> next = start;
                                 new node -> prev = NULL;
                                 start = new_node;
                                 return start;
                     }
                Delete a node from the front of DLL
         ii.
                                                                                                   CO3 L2
                  struct node *delete_beg(struct node *start)
                                                                                            [10]
                  ł
                              struct node *ptr;
                              ptr = start;
                              start = start->next;
                              start -> prev = NULL;
                              free(ptr);
                              return start;
                  }
         iii.
                Insert a node from a DLL before a node with a given value.
                  struct node *insert_before(struct node *start)
                  {
                          struct node *new_node, *ptr;
                          int num, val;
printf("\n Enter the data : ");
                          scanf("%d", &num);
                          printf("\n Enter the value before which the data has to be inserted:");
                          scanf("%d", &val);
                          new_node = (struct node *)malloc(sizeof(struct node));
                          new_node -> data = num;
                          ptr = start;
                          while(ptr -> data != val)
                                 ptr = ptr -> next;
                          new_node -> next = ptr;
                          new_node -> prev = ptr-> prev;
                          ptr -> prev -> next = new_node;
                          ptr -> prev = new_node;
                          return start;
                  }
                Delete a node from a DLL before a node with a given value.
         iv.
```

```
struct node *delete_before(struct node *start)
                 {
                         struct node *ptr, *temp;
                         int val;
                         printf("\n Enter the value before which the node has to delet
                         scanf("%d", &val);
                         ptr = start;
                         while(ptr -> data != val)
                                ptr = ptr -> next;
                         temp = ptr -> prev;
                         if(temp == start)
                                 start = delete_beg(start);
                         else
                         {
                                 ptr -> prev = temp -> prev;
                                 temp -> prev -> next = ptr;
                         free(temp);
                         return start;
     Demonstrate the various operations performed in a Linked Stack with suitable C-
6
     function.
             Operations on stack:
             Push:
              . To insert an item to a stack.
                * Create a new node, temp using malloc function.
                 * Place about in the data field and top in the link field
                 * top is then made to point to temp.
              Void push(inti, element item)
                2
                                                                                          CO3 L2
                                                                                   [10]
                   changes den:
                   temp = (stackplad) malloc( staize of (stackplad);
                    temp -=>data = item;
                     temp -slink = top[i];
                      top[i]= itemp;
                      3
                                                                In the top(i)
                                                         31
                                           top[i]
               figun
                                             1 temp =
                                            40
```

(25) Pep: \* Pop returns the top element and changes top to point the address contained in its link field. \* The removed node is then freed and item is returned. element pop (int i) Olemp 2 stack pt temp = tep[i]; (4) k-top[i] element item; 3 if (! temp) return stack Emply (); ilem = temp -=>data; ) FR top[1] = temp -slink; top[i] 3 free (temp); return item; ŝ