USN					

SET-1

Internal Assessment Test 2 – December 2022

Sub:				,	Sub Code:	18CS53	Branch:	ISE		
Date:	2/12/2022	Duration:	90 min's	Max Marks:	50	Sem/Sec:	V A, B &	C	O	BE
		Answe	r any FIVE	FULL Ques	tion	S		MARKS	CO	RBT
	Write the rela	tional algel following t	bra expressi wo tables:	on for the foll	owir	ng:	san dua)	5	1	L3
	Employee(Fname, Minit, Lname, ssn, bdate, address, salary, super_ssn, dno) Department(Dname, Dnumber, Mgr_ssn, Mgr_Start_date)									
	Retrieve the S department 5 (use Union).									
	Select ssn fro Union select s	ssn from de	partment w	here Dnumber						
	Write the relain 1 a): Retrie	_				•	mentioned	5	1	L2
	Π Ename (σ si Department)						yee X			
	Discuss about A query with subquery.				-		referred as	5	2	L1
	Here, the oute Eg;	er query wi	ll execute de	ependents upo	n the	e inner query	's output.			
	Select Ename where d_no=:		ployee whe	re Eno in (So	elect	e_no from o	department			
	Illustrate SQ restrictions or			by' and 'ha	aving	y' clauses. E	xplain the	5	2	L2
	'Group by cl attributes and by the 'group	having cla	use can be u	he data items sed to reduce						
	Eg.,									
		-	from produ ame having	count(*) > 10	0;					

3	Consider the following tables:	10	2	L3
	Loan(lno, bname, amount)			
	Borrower(lno, cname)			
	Account(ano, bname, amount)			
	Depositor(ano, cname)			
	Write the nested subquery SQL statements using the following:			
	'in' and 'not in'			
	'exist' and 'not exist'			
	'some', 'all', 'not all', 'any'			
	Salaat Ing from Ioon yehara Ing in (salaat Ing from horrower).			
	Select lno from loan where lno in (select lno from borrower); Select lno from loan where lno not in(select lno from borrower);			
	Select ino from foan where mo not in(select mo from boffower),			
	Select lno from loan where exist (select lno from borrower where cname=			
	'XYZ');			
	Select lno from loan where not exist (select lno from borrower where cname=			
	'XYZ');			
	Select amount from loan where amount > any (select amount from loan where bname= 'XYZ');			
	Select amount from loan where amount > some (select amount from loan where bname= 'XYZ');			
	Select amount from loan where amount > all (select amount from loan where bname= 'XYZ');			
	Select amount from loan where amount > not all (select amount from loan where bname= 'XYZ');			
4	Explain the different domain constraint that can be applicable during table creation in SQL with a suitable example.	10	2	L2
	Domain constraint is a constraint which is used to keep the domain attribute in the consistent state.			
	Create table abcd (emp int not null unique, check (emp > 100), name varchar(10));			
	Data type: is a constrain which describes what type of data should store. Varchar (10): here the 10 describes that the number of maximum character can			
	be stored under the domain attribute.			
	Not null: the not null constraint used to describe that the domain value should			
	be empty or null (it is a mandatory field insists us to definitely store the value)/			
	Unique: This constraint used to store the unique value under the domain.			
	There will be no duplicate data under that domain attribute.			

Check: Another domain constraint knows as explicit domain constraint uto check the range of value before going to store the values under the dorattribute.			
Primary key: Key constraints or integrity used to retrieve data or tuple uniquely from the table.			
Foreign key: This key is known as referential integrity constraint to estathe relationship between the two tables.	ablish		
Consider the following schema for OrderDatabase	10	2	L3
SALESMAN (Salesman_id, Name, City, Commission) CUSTOMER (Customer_id, Cust_Name, City, Grade,Salesman_id) ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_	id)		
Write SQL queries for the following: 1. Count the customers with grades above Bangalore's average.			
SELECT GRADE, COUNT (DISTINCT CUSTOMER_II FROMCUSTOMER1	D)		
GROUP BY GRADE			
HAVING GRADE > (SELECT AVG(GRADE)			
FROM CUSTOMER1 WHERE CITY='BANGALORE');			
2. Find the name and numbers of all salesmen who had more than one customer.			
SELECT SALESMAN_ID, NAME			
FROM SALESMAN A WHERE 1 < (SELECT COUNT (*)			
FROM CUSTOMER1			
WHERE SALESMAN_ID=A.SALESMAN_ID);			
3. List all salesmen and indicate those who have and don't have customer their cities (Use UNION operation.)	rs in		
SELECT SALESMAN.SALESMAN_ID, NAME, CUST_NAME, COMMISSION			
FROM SALESMAN, CUSTOMER1 WHERE SALESMAN.CITY = CUSTOMER1.CITY			
UNION			
SELECT SALESMAN_ID, NAME, 'NO MATCH', COMMISSION FROM SALESMAN			
WHERE NOT CITY = ANY			
(SELECT CITY FROM CUSTOMER1)			
ORDER BY 2 DESC;			

	4. Create a view that finds the salesman who has the customer with the highest order of a day.			
	CREATE VIEW ELITSALESMAN AS SELECT B.ORD_DATE, A.SALESMAN_ID, A.NAME FROM SALESMAN A, ORDERS B WHERE A.SALESMAN_ID = B.SALESMAN_ID AND B.PURCHASE_AMT=(SELECT MAX (PURCHASE_AMT) FROM ORDERS C WHERE C.ORD_DATE = B.ORD_DATE);			
	5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.			
	Use ON DELETE CASCADE at the end of foreign key definitions while creating child table orders and then execute the following: Use ON DELETE SET NULL at the end of foreign key definitions while creating child table customers and then executes the following: DELETE FROM SALESMAN WHERE SALESMAN_ID=1000;			
6	Consider the 'Company' schema(database) with two tables:	10	1	L3
	Employee(<u>eid</u> , name, dob, salary) Salary(<u>invoice id</u> , eid, basic, da, hra, total)			
	Illustrate the following using SQL statements:			
	1) Change the table name			
	Alter table Employee rename Employee into Empl;			
	2) Change the attribute name Alter table Employee change column abc xyz varchar(10);			
	3) Add new attribute Alter table Employee add cname varchar(10);			
	4) Delete an existing attribute on the table Alter table Employee drop column cname;			
	5) Modify the data type of an attribute Alter table Employee change abc to xyz int;			
	6) Add primary key after table creation. Alter table Employee add primary key(abc);			
	7) Add foreign key after table creation.			

Alter table employee add foreign key(abc) references xyz(abc) on delete cascade on update cascade;

8) Write the SQL query to illustrate 'default' and 'auto_increment'.
Write about 'on delete cascade' and 'on update cascade'.

Create table abc(rno int AUTO_INCREAMENT, name varchar(10) default 'Today');

Faculty Signature

CCI Signature

HOD Signature