

USN

Internal Assessment Test II(set2) – Dec 2022

Sub:
Application Development Using Python-

Scheme and Solution
Sub Code: 18CS55 Branch: ISE

Date: 03/12/2022 Duration: 90 mins
Max

Marks:
50 Sem/Sec: V A,B&C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1a) Explain the use of following string related methods with examples

code snippets

i) center(), rjust() and ljust() methods ii) join() and split()

6 CO2 L2

Ans

1. center(), rjust() and ljust() methods (1*3M)

The center() string method works like ljust() and rjust() but

centers the text rather than justifying it to the left or right.

Ex:

>>> 'Hello'.center(20)

' Hello '

>>> 'Hello'.center(20, '=')

 '=======Hello========'

The rjust() and ljust()

The rjust() and ljust() string methods return a padded version

of the string they are called on, with spaces inserted to justify

the text. The first argument to both methods is an integer

length for the justified string.

Ex:

>>> 'Hello'.rjust(20)

' Hello'

>>> 'Hello World'.rjust(20)

' Hello World'

>>> 'Hello'.ljust(10) 'Hello '

2. join() and split()(1.5*2M)

The join() method is useful when you have a list of strings that

need to be joined together into a single string value. The join()

method is called on a string, gets passed a list of strings, and

returns a string. The returned string is the concatenation of

3+3

each string in the passed-in list

Ex:

>>> ', '.join(['cats', 'rats', 'bats'])

'cats, rats, bats'

>>> ' '.join(['My', 'name', 'is', 'Simon'])

'My name is Simon'

 The split() method does the opposite of Join It’s called

on a string value and returns a list of strings.

EX:

>>> 'My name is Simon'.split()

['My', 'name', 'is', 'Simon']

>>> 'MyABCnameABCisABCSimon'.split('ABC')

['My', 'name', 'is', 'Simon']

>>> 'My name is Simon'.split('m')

['My na', 'e is Si', 'on']

1b) Write short notes on the following modules. Give examples for their

usage.

i) re ii) pyperclip (2*2Marks)

4 CO2 L2

Ans re Module:

re stands for regular expression

This module provides regular expression for matching operations

Passing a string value representing your regular expression to

re.compile() returns a Regex pattern object (or simply, a Regex

object).

EX: To create a Regex object that matches the phone number pattern

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

We should always make sure to import re module whenever we are

writing any regular expression Otherwise,will get a NameError:

name 're' is not defined error message.

Pyperclip Module:

The pyperclip module has copy() and paste() functions that can send

text

to and receive text from your computer’s clipboard. Sending the

output of your program to the clipboard will make it easy to paste it

to an email, word processor, or some other software.

Pyperclip does not come with Python we need to install it from third

party module.

EX:

>>> import pyperclip

>>> pyperclip.copy('Hello world!')

>>> pyperclip.paste()

'Hello world!

2a) Describe the following with suitable Python code snippets.

(i) Greedy and Non Greedy Pattern Matching (ii) findall() method of

Regex object.(1*4+1*2 Marks)

6 CO3 L3

(i) Greedy and Non Greedy Pattern Matching

Python’s regular expressions are greedy by default, which means that

in ambiguous situations they will match the longest string possible.

The non- greedy version of the curly brackets, which matches the

shortest string pos- sible, has the closing curly bracket followed by a

question mark.

>>> greedyHaRegex = re.compile(r'(Ha){3,5}')

 >>> mo1 = greedyHaRegex.search('HaHaHaHaHa')

>>> mo1.group()

'HaHaHaHaHa'

>>> nongreedyHaRegex = re.compile(r'(Ha){3,5}?') >>> mo2 =

nongreedyHaRegex.search('HaHaHaHaHa') >>> mo2.group()

'HaHaHa'

the question mark can have two meanings in regular expres- sions:

declaring a nongreedy match or flagging an optional group.

 II) findall() method

findall() method will return the strings of every match in the searched

string

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

>>> mo = phoneNumRegex.search('Cell: 415-555-9999 Work: 212-

555-0000')

 >>> mo.group()

'415-555-9999'

findall() will not return a Match object but a list of strings—as long

as there are no groups in the regular expression. Each string in the

list is a piece of the searched text that matched the regular

expression.

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no

groups

>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-

0000') ['415-555-9999', '212-555-0000']

If there are groups in the regular expression, then findall() will return

a list of tuples. Each tuple represents a found match, and its items are

the matched strings for each group in the regex

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d)-(\d\d\d\d)') #

has groups >>> phoneNumRegex.findall('Cell: 415-555-9999 Work:

212-555-0000')

[('415', '555', '1122'), ('212', '555', '0000')]

Below points should be in answer:

1. When called on a regex with no groups, such as \d\d\d-\d\d\d-

\d\d\d\d, the method findall() returns a list of string matches,

such as ['415-555- 9999', '212-555-0000'].

2. When called on a regex that has groups, such as (\d\d\d)-

(\d\d\d)-(\d\ d\d\d), the method findall() returns a list of tuples

of strings (one string for each group), such as [('415', '555',

'1122'), ('212', '555', '0000')].

2b) Differentiate List, Set, and Tuple with examples. (1*4 points in each

carries 4 marks)

4 CO2 L2

List set Tuple

Lists is Mutable Set is Mutable Tuple is Immutable

It is Ordered

collection of items

It is Unordered

collection of items

It is Ordered

collection of items

Items in list can be

replaced or changed

Items in set cannot

be changed or

replaced

Items in tuple cannot

be changed or

replaced

1. Ex:

L=[10,20.”a”,40]

Ex: s={1,2,3,4} Ex: t=(1,2,3,4,4)

3a) Write a python program to store 5 players’ data in Nested Dictionary.

Have players names as the keys and dictionary which contains score

1, score 2 and score 3 in 3 matches as values. Write a function

displayaverage() that would take match name either ‘Match 1’, or

‘Match 2’ or ‘Match 3’ as argument and display the average scores of

for the Match name passed.(4 Marks program+ 1marks o/p)

5 CO2 L3

Players = {'A': {'match1': 5, 'match2': 12,'match3':20},

 'B': {'match1': 5, 'match2': 13,'match3':30},

 'C': {'match1': 5, 'match2': 15,'match3':40},

 'D':{'match1': 5, 'match2': 12,'match3':50},

 'E':{'match1': 5, 'match2': 25,'match3':60}}

def displayaverage(players, item):

 numBrought = 0

 for k, v in players.items():

 numBrought = numBrought + v.get(item, 0)

 average=numBrought/5

 return average

print('average:')

print('Match1 average : '+str(displayaverage(Players,'match1')))

print('Match2 average : '+str(displayaverage(Players,'match2')))

print('Match3 average : '+str(displayaverage(Players,'match3')))

Output:

average:

Match1 average : 5.0

Match2 average : 15.4

Match3 average : 40.0

3b) Explain the use of get() and setdefault() methods related to dictionary

with suitable code snippet.

(2.5*2 Marks)

5 CO2 L2

 The get() Method

dictionaries have a get() method that takes two arguments: the key of

the value to retrieve and a fallback value to return if that key does not

exist.

>>> picnicItems = {'apples': 5, 'cups': 2}

>>> 'I am bringing ' + str(picnicItems.get('cups', 0)) + ' cups.' 'I am

bringing 2 cups.'

>>> 'I am bringing ' + str(picnicItems.get('eggs', 0)) + ' eggs.' 'I am

bringing 0 eggs.'

Because there is no 'eggs' key in the picnicItems dictionary, the default

value 0 is returned by the get() method. Without using get(), the code

would have caused an error message,

The setdefault() Method

The first argument passed to the method is the key to check for, and

the second argument is the value to set at that key if the key does not

exist. If the key does exist, the setdefault() method returns the key’s

value.

Ex:

>>> spam = {'name': 'Pooka', 'age': 5}

>>> spam.setdefault('color', 'black') 'black'

>>> spam

{'color': 'black', 'age': 5, 'name': 'Pooka'}

 >>> spam.setdefault('color', 'white')

'black'

>>> spam

{'color': 'black', 'age': 5, 'name': 'Pooka'}

4a) Write a python program to read n number of email IDs and extract the

domain names from the email IDs using regular expression.

(4 marks program+2 marks o/p)

6 CO3 L3

 import re

n=int(input('number of email'))

en=[]

for i in range(0,n):

 email=input('enter email id')

 en.append(email)

#print(en)

for i in en:

 emails = re.findall(""@(\w+\.+\w+)"", i)

 print(emails)

output
number of email 1

enter email id ash.d@cmr.com

['cmr.com']

Or
import re

n=int(input('number of email'))

en=[]

for i in range(0,n):

 email=input('enter email id')

 en.append(email)

pat = re.compile(r"(\w+)@((\w+)+.(\w{2,3}?).(\w{2,3})?)")

for i in en:

 r2 = pat.search(i)

 print(r2.group(1)+" "+r2.group(3))

Execution:
number of email 2

enter email id abc@yahoo.com

enter email id xyz@gmail.com

Input:

mailto:id%20ash.d@cmr.com
mailto:xyz@gmail.com

abc yahoo

xyz gmail

4b) Describe the usage of following special symbols using examples.(1*4

marks)

i) { } ii) * iii) ? iv) +

4 CO3 L2

{} -Matching Specific Repetitions with Curly Brackets

If you have a group that you want to repeat a specific number of times,

fol- low the group in your regex with a number in curly brackets. For

example, the regex (Ha){3} will match the string 'HaHaHa', but it will

not match 'HaHa',

You can also leave out the first or second number in the curly brackets

to leave the minimum or maximum unbounded. For example, (Ha){3,}

will match three or more instances of the (Ha) group, while (Ha){,5}

will match zero to five instances. Curly brackets can help make your

regular expres- sions shorter.

(Ha){3,5}

 ((Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha)(Ha))

*Matching Zero or More with the Star

The * (called the star or asterisk) means “match zero or more”—the

group that precedes the star can occur any number of times in the text.

It can be completely absent or repeated over and over again

>>> batRegex = re.compile(r'Bat(wo)*man')

>>> mo1 = batRegex.search('The Adventures of Batman') >>>

mo1.group()

'Batman'

+ Matching One or More with the Plus

While * means “match zero or more,” the + (or plus) means “match

one or more.” Unlike the star, which does not require its group to

appear in the matched string, the group preceding a plus must appear

at least once. It is not optional.

>>> batRegex = re.compile(r'Bat(wo)+man')

>>> mo1 = batRegex.search('The Adventures of Batwoman') >>>

mo1.group()

'Batwoman'

? Optional Matching with the Question Mark

Sometimes there is a pattern that you want to match only optionally.

That is, the regex should find a match whether or not that bit of text is

there. The ? character flags the group that precedes it as an optional

part of the pattern

>>> batRegex = re.compile(r'Bat(wo)?man')

>>> mo1 = batRegex.search('The Adventures of Batman') >>>

mo1.group()

'Batman'

5a) Differentiate the usage of group() and groups() methods with example

code. (2*2 marks)

4 CO3 L2

group()

Say you want to separate the area code from the rest of the phone

number. Adding parentheses will create groups in the regex: (\d\d\d)-

(\d\d\d-\d\d\d\d). Then you can use the group() match object method to

grab the matching text from just one group.

>>> phoneNumRegex = re.compile(r’(\d\d\d)-(\d\d\d-\d\d\d\d)’) >>>

mo = phoneNumRegex.search(‘My number is 415-555-4242.’) >>>

mo.group(1)

‘415’

>>> mo.group(2) ‘555-4242’

>>> mo.group(0) ‘415-555-4242’

>>> mo.group() ‘415-555-4242’

groups()

If you would like to retrieve all the groups at once, use the groups()

method—note the plural form for the name.

>>> mo.groups()

(‘415’, ‘555-4242’)

>>> areaCode, mainNumber = mo.groups()

 >>> print(areaCode)

415

>>> print(mainNumber)

555-4242

Since mo.groups() returns a tuple of multiple values, you can use the

multiple-assignment trick to assign each value to a separate variable,

as in the previous areaCode, mainNumber = mo.groups() line.

5b)

Write a Python code to read the string as input and count the

occurrence of each vowels.

6 CO2 L3

#program

def Check_Vow(string, vowels):

 # casefold has been used to ignore cases

 string = string.lower()

 # Forms a dictionary with key as a vowel

 # and the value as 0

 count = {}.fromkeys(vowels, 0)

 # To count the vowels

 for character in string:

 if character in count:

 count[character] += 1

 return count

Driver Code

vowels = 'aeiou'

string = input("enter string")

print (Check_Vow(string, vowels))

output

enter string sonal

{'a': 1, 'e': 0, 'i': 0, 'o': 1, 'u': 0}

6a) Illustrate with example how the copy.copy() is different from

copy.deepcopy() which is relevant to lists or dictionaries in Python.

(2.5*2.5Marks)

5 CO2 L2

copy.copy(), can be used to make a duplicate copy of a mutable value

like a list or dictionary, not just a copy of a reference.

>>> import copy

>>> spam = ['A', 'B', 'C', 'D']

>>> cheese = copy.copy(spam)

>>> cheese[1] = 42

>>> spam

['A', 'B', 'C', 'D']

>>> cheese

['A', 42, 'C', 'D']

Now the spam and cheese variables refer to separate lists, which is

why only the list in cheese is modified when you assign 42 at index 1.

As you can see in Figure 4-7, the reference ID numbers are no longer

the same for both vari- ables because the variables refer to independent

lists.

If the list you need to copy contains lists, then use the copy.deepcopy()

The deepcopy() function will copy these inner lists as well.

#Shalow copying copy.copy()

import copy

list1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]

list2 = copy.copy(list1)

list1.append([13, 14,15])

print("Old list:", list1)

print("New list:", list2)

print('\nID of Old List:', id(list1))

print('ID of New List:', id(list2))

Execution:
Old list: [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13,

14, 15]]

New list: [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]

#Deep copying example:

import copy

x = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

z = copy.deepcopy(x)

x[2][2] = 'Hello'

print(x)

print(z)

print('\nID of Old List:', id(x))

print('ID of New List:', id(z))

Execution:
[[1, 2, 3], [4, 5, 6], [7, 8, 'Hello']]

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

ID of Old List: 2440781390016

ID of New List: 2440781129984

(6b) What is dictionary? Explain about the following methods related to

dictionary with code snippets

values() ii) keys() iii) items()

(1+1.5*3 marks with example code for each method)

5 CO3 L2

 The keys(), values(), and items() Methods

There are three dictionary methods that will return list-like values of

the dictionary’s keys, values, or both keys and values: keys(), values(),

and items(). The values returned by these methods are not true lists:

They cannot be modified and do not have an append() method. But

these data types (dict_keys, dict_values, and dict_items, respectively)

can be used in for loops

values()- returns values in dictionary

>>> spam = {'color': 'red', 'age': 42}

>>> for v in spam.values():

print(v)

red 42

keys()- returns keys in dictionary

>>> for k in spam.keys(): print(k)

color

age

items() returns key values both

>>> for i in spam.items():

print(i)

('color', 'red')

('age', 42)

