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Sub: Artificial Intelligence & Machine Learning Code: 18CS71 

Date: 01/12/2022 Duration: 90mins 
Max 

Marks:  50 
Sem: VII Branch: ISE 

Note: Answer Any Five Questions 

Question 

# 
Description Marks 

Distribution 
Max 

Marks 

1 
 Back propagation algorithm 

 Deriving the derivatives rule  

4 M 
6 M 10 M 

2 

 

 Finding the overall probabilities 

 Applying Naïve Bayes to calculate the 

conditional probabilities 

 Predicting the result 

2 M 

6M 
2M 

 

10 M 

 

 

 

3 
 Explaining KNN algorithm for discrete values 

 Pseudo Code 

6M 

4M 
10 M 

4 

 Finding the euclidean distance  

 Updating the centroid  

 Applications of k-Means clustering  

4M 
4M 
2M 

    

10 M 

5a) 

     5b) 

 Explaining locally weighted regression with ex. 

 Explanation of Q-learning 
5M 

5M 
10 M 

6a) 

6b) 

 Bayesian belief networks explanation with example 

 EM algorithm explanation 
5M 

5M 
10 M 

7a) 

7b) 

 Explaining CADET system with example 

 Explanation of Radial Basis function  6 M 
4 M 

10 M 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Internal Assessment Test 2 Solutions– Dec.2022 

Sub: Artificial Intelligence & Machine Learning Code: 18CS71 

Date: 01/12/2022 Duration: 90mins 
Max 

Marks:  50 
Sem: VII Branch: ISE 

Note: Answer Any Five Questions 

1. Write an algorithm for back propagation which uses stochastic gradient descent method. Derive 

the back propagation rule considering the output layer and training rule for output unit weights. 

Solution: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.  

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  
11.  
12.  
13.  

 

14.  
 

 



 
• Deriving the stochastic gradient descent rule: Stochastic gradient descent involves   

 

• For each training example d every weight wji is updated by adding to it Δ wji 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 1: Training Rule for Output Unit Weights. 

• w
ji 

can influence the rest of the network only through net
j 
, net

j 
can influence the 

network only through o
j
. 

Therefore, we can invoke the chain rule again to write 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Classify the test data {Red, SUV, Domestic} using NAÏVE Bayes classifier for the dataset shown 

below. 

Color Type Origin Stolen 

Red Sports Domestic Yes 

Red Sports Domestic No 

Red Sports Domestic Yes 

Yellow Sports Domestic No 

Yellow Sports Imported Yes 

Yellow SUV Imported No 

Yellow SUV Imported Yes 

Yellow SUV Domestic No 

Red SUV Imported No 

Red Sports Imported Yes 

 

Solution: 

Our task is to predict the target value (yes or no) of the target concept Stolen for this new 
instance

  

Case 2: Training Rule for Hidden Unit Weights. 
• In the case where j is an internal, or hidden unit in the network, the derivation of  the training rule 

for w
ji 

must take into account the indirect ways in which w
ji 

can  influence the network outputs and 

hence E
d
. 

• For this reason, we will find it useful to refer to the set of all units immediately downstream of 

unit j in the network and denoted this set of units by Downstream(  j). 

• net
j 
can influence the network outputs only through the units in Downstream(j). 

Therefore, we can write 



 
The probabilities of the different target values can easily be estimated based on their frequencies over 

the 10 training examples. 

 P(Yes) = 5/10 = 0.5  

 P(No) = 5/10 = 0.5  

For new data {Red, SUV, Domestic} we need to classify the result 

 

= argmax P (Vj) * P (Red|Vj) * P (SUV|Vj) * P (Domestic|Vj), Vj ={Yes, No}  

 

Now we need to find the conditional probabilities for the test data w.r.t ‘Yes’ as mentioned below.    

 P(Red|Vj=Yes) = 3/5 = 0.6  

 P(SUV|Vj=Yes) = 1/5 = 0.2  

 P(Domestic|Vj=Yes) = 2/5 = 0.4  

Now we need to find the conditional probabilities for the test data w.r.t ‘No’as mentioned below.  

 P(Red|Vj=No) = 2/5 = 0.4  

 P(SUV|Vj=No) = 3/5 = 0.6  

 P(Domestic|Vj=No) = 3/5 = 0.6
 

Finally for the test data we have the formula as below. 
 
 
 
 
 
 
VNB {Yes} = P (Yes)*P (Red|Yes)*P (SUV|Yes)*P (Domestic|Yes) = 0.5*0.6*0.2*0.4 = 0.024  
 
VNB {No} = P (No)* P (Red|No)*P (SUV|No)*P (Domestic|No) = 0.5*0.4*0.6*0.6 = 0.072  
 
So for new data {Red, SUV, Domestic} the result is No 
 
 

 

3. Explain the K – nearest neighbour algorithm for approximating a discrete – valued function f-> Rn-V 

with pseudo code. 

 
Solution: 

 

 
 



 
 

Pseudo Code: 

 

1. Load the data 

2. Initialize the value of k 

3. For getting the predicted class, iterate from 1 to total number of training data points 

1. Calculate the distance between test data and each row of training data. Here we will use 

Euclidean distance as our distance metric since it’s the most popular method. The other 

metrics that can be used are cosine, etc. 

2. Sort the calculated distances in ascending order based on distance values 

3. Get top k rows from the sorted array 

4. Get the most frequent class of these rows 

5. Return the predicted class 

 

 
4. Consider the following iris dataset. Using the k-Means Clustering approach, classify the below 

examples into k clusters by taking k value as 2.Also mention the applications of k-Means clustering 

approach.(Can consider 2 initial values for the first step as No.3 and No.6). 

 
 

Solution:  

Since k=2, initial centroid values are as below. 

Initial centroid X Y 

c1 7 3.2 

c2 5.8 2.7 

 

2)Calculate the euclidean distance of the given equation    

Distance(X,Y)(a,b) = Sqrt(X-a)2+(X-b)2    

 

Initial centroid X Y Distance from cluster1 Distance from cluster2 

1 5.1 3.5 sqrt(7-5.1)2+(3.2-3.5)2 = 1.92 sqrt(5.8-5.1)2+(2.7-3.5)2 = 1.02 

2 4.9 3 sqrt(7-4.9)2+(3.2-3)2 = 2.10 sqrt(5.8-4.9)2+(2.7-3)2 = 0.94 

3 7 3.2 sqrt(7-7)2+(3.2-3.2)2 = 0 sqrt(5.8-7)2+(2.7-3.2)2 = 1.30 

4 6.4 3.2 sqrt(7-6.4)2+(3.2-3.2)2 = 0.6 sqrt(5.8-6.4)2+(2.7-3.2)2 = 0.94 

5 6.3 3.3 sqrt(7-6.3)2+(3.2-3.3)2 = 0.70 sqrt(5.8-6.3)2+(2.7-3.3)2 = 0.81 

6 5.8 2.7 sqrt(7-5.8)2+(3.2-2.7)2 = 1.30 sqrt(5.8-5.8)2+(2.7-2.7)2 = 0 

 

 

 

 

 



 
 

1st iteration 

 C1 C2 assigned to 

1 1.92 1.02 c2 

2 2.1 0.94 c2 

3 0 1.3 c1 

4 0.6 0.94 c1 

5 0.7 0.81 c1 

6 1.3 0 c2 

Values 3, 4, 5 belongs to c1 and 1, 2, 6 belongs to c2. Now we need to calculate the new centroids. 

 c1= (7+6.4+6.3)/3 = 6.56, (3.2+3.2+3.3)/3 =3.23 = (6.6,3.2) 

 c2=(5.1+4.9+5.8)/3 = 5.26, (3.5+3+2.7)/3 =3.06 = (5.3,3.1) 
 
2nd iteration 

Find the distance w.r.t the updated centroid 6,6, 3.2 and 5.3,3.1 

Initial centroid X  Y Distance from cluster1 Distance from cluster2 

1 7  3.2 sqrt(6.6-5.1)2+(3.2-3.5)2 = 1.52 sqrt(5.3-5.1)2+(3.1-3.5)2 = 0.44 

2 5.8  2.7 sqrt(6.6-4.9)2+(3.2-3)2 = 1.71 sqrt(5.3-4.9)2+(3.1-3)2 = 0.41 

3 7  3.2 sqrt(6.6-7)2+(3.2-3.2)2 = 0.4 sqrt(5.3-7)2+(3.1-3.2)2 = 1.70 

4 6.4  3.2 sqrt(6.6-6.4)2+(3.2-3.2)2 = 0.2 sqrt(5.3-6.4)2+(3.1-3.2)2 = 1.10 

5 6.3  3.3 sqrt(6.6-6.3)2+(3.2-3.3)2 = 0.31 sqrt(5.3-6.3)2+(3.1-3.3)2 = 1.07 

6 5.8  2.7 sqrt(6.6-5.8)2+(3.2-2.7)2 = 0.94 sqrt(5.3-5.8)2+(3.1-2.7)2 = 0.78 

 

 C1 C2 assigned to 

1 1.52 0.44 c2 

2 1.71 0.41 c2 

3 0.4 1.7 c1 

4 0.2 1.1 c1 

5 0.31 1.07 c1 

6 0.94 0.78 c2 

 

Values 3, 4, 5 belongs to c1 and 1, 2, 6 belongs to c2. Since there is no change in the previous cluster 

values, we will stop here and the final clusters are as mentioned below. 

 C1 C2 assigned to 

1 1.52 0.44 c2 

2 1.71 0.41 c2 

3 0.4 1.7 c1 

4 0.2 1.1 c1 

5 0.31 1.07 c1 

6 0.94 0.78 c2 

 

5.a) Explain locally weighted linear regression with an example. 

Solution: 
 



 

 
 

 

 

 Consider a query point x = 5.0 and let x^{(1)} and x^{(2) be two points in the training set such 

that  x^{(1)} = 4.9 and x^{(2)} = 3.0. 

Using the formula w^{(i)} = exp(frac{-(x^{(i)} - x)^2}{2tau^2}) with tau = 0.5: 

w^{(1)} = exp(frac{-(4.9 - 5.0)^2}{2(0.5)^2}) = 0.9802 

w^{(2)} = exp(frac{-(3.0 - 5.0)^2}{2(0.5)^2}) = 0.000335 

 



 

 So, J(theta) = 0.9802*(theta^Tx^{(1)} - y^{(1)}) + 0.000335*(theta^Tx^{(2)} - y^{(2)}) 

Thus, the weights fall exponentially as the distance between x and x^{(i)} increases and so does 

the contribution of error in prediction for x^{(i)} to the cost. 

Consequently, while computing theta, we focus more on reducing (theta^Tx^{(i)} - y^{(i)})^2 for the 

points lying closer to the query point (having larger value of w^{(i)}). 

 

Steps involved in locally weighted linear regression are: 

Compute theta to minimize the cost. J(theta) = $sum_{i=1}^{m} w^{(i)}(theta^Tx^{(i)} - y^{(i)})^2 

Predict Output: for given query point x, 

return: theta^Tx 

 

 

5.b)Write a note on Q-learning. 

Solution: 

 
 

 



 

 
 

6.a. Explain Bayesian Belief Networks and conditional independence with example. 

 

Solution: 

 

A Bayesian belief network describes the probability distribution governing a set of variables by 

specifying a set of conditional independence assumptions along with a set of conditional probabilities. 

Bayesian belief networks allow stating conditional independence assumptions that apply to subsets of 

the variables 

 

Representation 
A Bayesian belief network represents the joint probability distribution for a set of variables. 

Bayesian networks (BN) are represented by directed acyclic graphs. 
 
 
 
 
 
 
 

 

 

 

 
 

The Bayesian network in above figure represents the joint probability distribution over the boolean 

variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup 

 

A Bayesian network (BN) represents the joint probability distribution by specifying a set of conditional 

independence assumptions. 

 



 
 BN represented by a directed acyclic graph, together with sets of local conditional 

probabilities. 

 Each variable in the joint space is represented by a node in the Bayesian network. 

 The network arcs represent the assertion that the variable is conditionally independent of 

its non-descendants in the network given its immediate predecessors in the network. 

 A conditional probability table (CPT) is given for each variable, describing the 

probability distribution for that variable given the values of its immediate predecessors. 
 
 

The joint probability for any desired assignment of values (y1, . . . , yn) to the tuple of network variables 

(Y1 . . . Ym) can be computed by the formula  
 

 

 

 

Where, Parents(Yi) denotes the set of immediate predecessors of Yi in the network. 

 
Example: 
Consider the node Campfire. The network nodes and arcs represent the assertion that Campfire is 

conditionally independent of its non-descendants Lightning and Thunder, given its immediate parents 

Storm and BusTourGroup. 
 

 

 

 

  
 
 
 
 
 
 
 
 
 

 

 

 

 

This means that once we know the value of the variables Storm and BusTourGroup, the variables 

Lightning and Thunder provide no additional information about Campfire The conditional probability 

table associated with the variable Campfire. The assertion is 

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4 

 

 

6.b. Explain the EM Algorithm in detail. 

 

Solution: 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.a. Explain the CADET System with Case based reasoning with example. 

Solution: 

a. Case-based reasoning (CBR) is a learning paradigm based on lazy learning methods and 

they classify new query instances by analysing similar instances while ignoring instances 

that are very different from the query. 

b. In CBR represent instances are not represented as real-valued points, but instead, they 

use a rich symbolic representation. 

c. CBR has been applied to problems such as conceptual design of mechanical devices 

based on a stored library of previous designs, reasoning about new legal cases based on 

previous rulings, and solving planning and scheduling problems by reusing and 

combining portions of previous solutions to similar problems 

 

A prototypical example of a case-based reasoning 

 

d. The CADET system employs case-based reasoning to assist in the conceptual design of 

simple mechanical devices such as water faucets. 

e. It uses a library containing approximately 75 previous designs and design fragments to 

suggest conceptual designs to meet the specifications of new design problems. 

f. Each instance stored in memory (e.g., a water pipe) is represented by describing both its 

structure and its qualitative function. 

 

 



 
The problem setting is illustrated in below figure 

 

 

a. The function is represented in terms of the qualitative relationships among the water- flow 

levels and temperatures at its inputs and outputs. 

b. In the functional description, an arrow with a "+" label indicates that the variable at the 

arrowhead increases with the variable at its tail. A "-" label indicates that the variable at 

the head decreases with the variable at the tail. 

c. Here Qc refers to the flow of cold water into the faucet, Qh to the input flow of hot water, 

and Qm to the single mixed flow out of the faucet. 

d. Tc, Th, and Tm refer to the temperatures of the cold water, hot water, and mixed water 

respectively. 

e. The variable Ct denotes the control signal for temperature that is input to the faucet, and 

Cf denotes the control signal for waterflow. 

f. The controls Ct and Cf are to influence the water flows Qc and Qh, thereby indirectly 

influencing the faucet output flow Qm and temperature Tm. 

 

g. CADET searches its library for stored cases whose functional descriptions match the 

design problem. If an exact match is found, indicating that some stored case implements 

exactly the desired function, then this case can be returned as a suggested solution to the 

design problem. If no exact match occurs, CADET may find cases that match various 

subgraphs of the desired functional specification. 

 

 



 
7.b. Write a note on Radial basis function. 

 
Solution: 

 One approach to function approximation that is closely related to distance-weighted 

regression and also to artificial neural networks is learning with radial basis functions 

 In this approach, the learned hypothesis is a function of the form 

 Where, each xu is an instance from X and where the kernel function Ku(d(xu, x)) is defined 

so that it decreases as the distance d(xu, x) increases. 

 Here k is a user provided constant that specifies the number of kernel functions to be 

included. 

 �̂� is a global approximation to f (x), the contribution from each of the Ku(d(xu, x)) terms is 

localized to a region nearby the point xu. 

 

Choose each function Ku(d(xu, x)) to be a Gaussian function centred at the point xu with some variance 

𝜎u
2

 

 

 The functional form of equ(1) can approximate any function with arbitrarily small error, 

provided a sufficiently large number k of such Gaussian kernels and provided the width 

𝜎2 of each kernel can be separately specified. 

 

 The function given by equ(1) can be viewed as describing a two layer network where the first 

layer of units computes the values of the various Ku(d(xu, x)) and where the second layer 

computes a linear combination of these first-layer unit values.  

 

Example: Radial basis function (RBF) network 

 

Given a set of training examples of the target function, RBF networks are typically trained in a two-

stage process. 

1. First, the number k of hidden units is determined and each hidden unit u is defined by 

choosing the values of xu and 𝜎u
2 that define its kernel function Ku(d(xu, x)) 

2. Second, the weights w, are trained to maximize the fit of the network to the training data, 

using the global error criterion given by 

 

 



 
Because the kernel functions are held fixed during this second stage, the linear weight 

values w, can be trained very efficiently 

 

Several alternative methods have been proposed for choosing an appropriate number of hidden 

units or, equivalently, kernel functions. 

 One approach is to allocate a Gaussian kernel function for each training example 

(xi,f (xi)), centring this Gaussian at the point xi. Each of these kernels may be 

assigned the same width 𝜎2.  

 A second approach is to choose a set of kernel functions that is smaller than the 

number of training examples. This approach can be much more efficient than the 

first approach, especially when the number of training examples is large. 

 


