| USN | | | | | | |-----|--|--|--|--|--| | | | | | | | ## Internal Assessment Test 2 – December 2022 ## **Scheme and Solution** | Sub: | Computer Organization and Architecture | Sub Code: | 21CS34 | Branch: | CSE | | | |-------|---|---|---|---------|-----|----|------| | Date: | 27/12/22 Duration: 90 minutes Max Marks: 50 | Sem / Sec: | III / A | A, B, C | | OF | BE . | | | Answer any FIVE FULL Questions | _ | | | RKS | CO | RBT | | 1 | What is the process needed to resolve the conflict who use the bus to access main memory? Explain any 2 approaches in detail with figure. Bus Arbitration − 2 Marks The process by which the next device to become the mastership is transferred to it is called bus arbitration. Two approaches for Bus arbitration 1. Centralized arbitration: 4 Marks A single bus arbiter performs the arbitration. Usual arbiter A single bus arbiter performs the arbitration. Usual arbiter A single bus-arbiter performs the required arbitration Normally, processor is the bus-master. Processor may grant bus-mastership to one of the DMA control A DMA controller indicates that it hogical OR of bus-requests from then, processor activates BG1 signal indicating to DMA control BG1 signal is connected to all DMA controllers using a daisy-ch If DMA controller-1 is requesting the bus, Then, DMA controller-1 blocks propagation of grant-signa Otherwise, DMA controller-1 passes the grant downstrean Current bus-master indicates to all devices that it is using bus The bus-arbiter is used to coordinate the activities of all device Arbiter ensures that only 1 request is granted at any given time (BR → Bus-Request, BG → Bus-Grant, BBSY → Bus Busy) 2. Distributed arbitration: 4 Marks All devices participate in the selection of the next bus | DMA Controller lers. by activating Bf all devices contiers to use bus wain arrangement by activating BB by activating BB s requesting BB s requesting mee according to a | selected and will be the R line. nected to it. when it becomes s. G2. SY line. mory transfers. | bus Bus | 10] | 2 | L2 | | | (b) What is Virtual Memory? Explain its basic organization with neat diagram. | | | | |---|--|-----|---|----| | | Diagram and Explanation – 5 Marks | | | | | | Virtual memory – separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution. Logical address space can therefore be much larger than physical address space. Allows address spaces to be shared by several processes. Allows for more efficient process creation. A special hardware unit, called the Memory Management Unit (MMU), translates virtual addresses into physical addresses. | [5] | 3 | L1 | | 4 | Diagram and Explanation – 5 Marks S-bit row address | [5] | 3 | L1 | | - | (b) With a neat diagram briefly explain the internal organization of 16 Megabit dynamic memory chip configured as 2M x 8 Diagram and Explanation – 5 Marks | [5] | 3 | L1 | | | (b) Analyze how data are written into Read Only Memories. Discuss the different types of Read Only Memories. | | | | |---|--|-----|---|-----| | | ROM Cell – 2 Marks | | | | | | ROM Bit line | | | | | | Word line Connected to store a 0 Not connected to store a 1 | | | | | | Figure 5.12 A ROM cell. | [5] | 3 | L2 | | | At Logic value '0' → Transistor(T) is connected to the ground point (P). Transistor switch is closed & voltage on bit-line nearly drops to zero At Logic value '1' → Transistor switch is open. The bit-line remains at high voltage. | [5] | 3 | 1.2 | | | Types of ROM with explanation – 3 Marks | | | | | | • ROM | | | | | | PROM (Programmable Read Only Memory) EPROM (Erasable Programmable Read Only Memory) EEPROM (Electrically Erasable Programmable Read Only Memory) Flash Flash Cards Flash Drives | | | | | | (a) Consider the following 2 scenarios and answer the questions under each. | | | | | | A cache is organized in direct-mapped manner with the following parameters: Main memory size 32K words; Cache size 512 words; Block size 64 words (i) How many bits are there in a main memory address? (ii) How many bits are there in each of the TAG, BLOCK and WORD fields? | | | | | | MAIN MEMORY | | | | | 6 | Total Size $-32,768$
That can be represented with 2^x addresses
Therefore Address length $=$ 15 bits . ($2^{15} = 32,768$)
WORD | [5] | 3 | L3 | | | 64 Words per block
6 bits for WORD field (2 ⁶ = 64) | | | | | | BLOCK No. of Blocks = Total Cache Size / Words per block = 1024 / 128 = 8 3 bits for BLOCK field (8 Blocks = 2 ³ = 8) | | | | | | TAG Remaining 6 bits for TAG field. | | | | | | ek-set-associate cache consists of a total of 128 blocks divided into 8-block | | | | |-------------|---|-----|---|---| | sets. | | | | | | | ain memory contains 4096 blocks, each consisting of 128 words. | | | | | (i) Ho | w many bits are there in a main memory address? | | | | | (ii) Ho | ow many bits are there in each of the TAG, SET and WORD fields? | | | | | Answer | | | | | | Main Men | nory size=4096 blocks x128 words | | | | | | =4 x 1024 x 128 | | | | | | $=2^2 \times 2^{10} \times 2^7 = 2^{19}$ | | | | | Hence nun | nber of bits for address is 19-bits | | | | | Word – 7 | | | | | | Set - 4 | | | | | | Tag – 8 bit | | | | | | | | | | | | | e the following with respect to cache memory | | | | | (i) Ma | apping Function (ii) Replacement Algorithm (iii) Stale Data | | | | | | (iv) Write Through Protocol (v) Write Back Protocol | | | | | | | | | | | Each 1 Ma | | | | | | (i) | Mapping Function | | | | | | At any given time, only some blocks in the main memory are held in | | | | | | the cache. Which blocks in the main memory are in the cache is | | | | | | determined by a "mapping function". | | | | | (ii) | Replacement Algorithm | | | | | (/ | When the cache is full, and a block of words needs to be transferred | | | | | | from the main memory, some block of words in the cache must be | | | | | | replaced. This is determined by a " replacement algorithm ". | | | | | | replaced. This is determined by a replacement argorithm. | | | | | (iii) | Stale Data | [5] | 3 | I | | | During a DMA transfer from Main Memory to Disk and the cache | | | | | | uses write-back protocol, the data in memory might not reflect the | | | | | | changes that have been made in the cached copy. That outdated data in | | | | | | the memory is called the stale data | | | | | | | | | | | (iv) | Write Through Protocol | | | | | | Contents of the cache and the main memory may be updated | | | | | | simultaneously. This is the write-through protocol. | | | | | (v) | Write Back Protocol | | | | | | Update the contents of the cache, and mark it as updated by setting a | | | | | | bit known as the dirty bit or modified bit . The contents of the main | | | | | | memory are updated when this block is replaced. This is write-back | | | | | | or copy-back protocol. | | | | | | or copy when protocor. | | 1 | | ## **CO PO Mapping** | | Course Outcomes | Modules | P01 | PO2 | P03 | P04 | PO5 | 90d | PO7 | P08 | PO9 | PO10 | P011 | P012 | PSO1 | PSO2 | PSO3 | PSO4 | |-----|--|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------| | CO1 | Explain the organization and architecture of computer systems with machine instructions and programs | 1 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | CO2 | Analyze the input/output devices communicating with computer system | 2 | 3 | - | - | - | - | - | - | - | - | - | - | - | 2 | - | - | - | | CO3 | Demonstrate the functions of different types of memory devices | 3 | 2 | 2 | 2 | - | - | - | - | - | - | - | - | - | - | 2 | - | - | | CO4 | Apply different data types on simple arithmetic and logical unit | 4 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 2 | - | - | | CO5 | Analyze the functions of basic processing unit, Parallel processing and pipelining | 5 | 3 | 2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | - | - | | COGNITIVE
LEVEL | REVISED BLOOMS TAXONOMY KEYWORDS | |--------------------|---| | L1 | List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc. | | L2 | summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend | | L3 | Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover. | | L4 | Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer. | | L5 | Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize. | | PF | CORRELATION
LEVELS | | | | | | | | | |------|--|---|---------------------------------------|----------------|----------------------|--|--|--|--| | PO1 | Engineering knowledge | PO7 | 0 | No Correlation | | | | | | | PO2 | Problem analysis | alysis PO8 Ethics | | | Slight/Low | | | | | | PO3 | Design/development of solutions | ign/development of solutions PO9 Individual and team work | | 2 | Moderate/
Medium | | | | | | PO4 | Conduct investigations of complex problems | PUILL Communication | | 3 | Substantial/
High | | | | | | PO5 | Modern tool usage | | | | | | | | | | PO6 | The Engineer and society PO12 Life-long learning | | | | | | | | | | PSO1 | Develop applications using differe | nt stacks | s of web and programming technologic | es | | | | | | | PSO2 | 2 Design and develop secure, parallel, distributed, networked, and digital systems | | | | | | | | | | PSO3 | Apply software engineering method | ds to de | sign, develop, test and manage softwa | re sys | stems. | | | | | | PSO4 | Develop intelligent applications for | or busine | ess and industry | | | | | | |