

 CMR INSTITUTE OF TECHNOLOGY

 Affiliated to VTU, Approved by AICTE, Accredited by NBA and NAAC with “A++” Grade

 ITPL MAIN ROAD, BROOKFIELD, BENGALURU-560037, KARNATAKA, INDIA

 Department of Computer Science Engineering

Answer Scheme & Model Solution- IAT2

Sub: Database Management System Sub Code: 18CS53 Sem/Branch: V / CSE Sections: A,B,C

MARKS

CO

RBT

Question 1 Explain how the different update operations deal with

constraint violations.

10 CO2 L2

Scheme 1M+3M

+3M+

3M

Solution There are three basic operations that can change the states of

relations in the database:

1. Insert - used to insert one or more new tuples in a

relation

2. Delete- used to delete tuples

3. Update (or Modify)- used to change the values of

some attributes in existing tuples

Whenever these operations are applied, the integrity

constraints specified on the relational database schema should

not be violated.

There are four types of constraints:

1. Domain constraints : if an attribute value is given that

does not appear in the corresponding domain or is not of the

appropriate data type

2. Key constraints : if a key value in the new tuple t

already exists in another tuple in the relation r(R)

3. Entity integrity: if any part of the primary key of the

new tuple t is NULL

4. Referential integrity : if the value of any foreign key in

t refers to a tuple that does not exist in the referenced relation.

The Insert Operation

The Insert operation provides a list of attribute values for a

new tuple t that is to be inserted into a elation R. Insert can

violate any of the mentioned four types of constraints

Examples:

1. Operation:

Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, NULL, ‘1960-04-05’,

‘6357 Windy Lane, Katy, TX’, F, 28000, NULL, 4>

Result: This insertion violates the entity integrity constraint

(NULL for the primary key Ssn), so it is rejected

2. Operation:

Insert <‘Alicia’, ‘J’, ‘Zelaya’, ‘999887777’, ‘1960-04-05’,

‘6357 Windy Lane, Katy, TX’, F, 28000, ‘987654321’, 4>

Result: This insertion violates the key constraint because

another tuple with the same Ssn value already exists in the

EMPLOYEE relation, and so it is rejected.

3. Operation:

Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-

05’, ‘6357 Windswept, Katy,

TX’, F, 28000, ‘987654321’, 7>

Result: This insertion violates the referential integrity

constraint specified on Dno in EMPLOYEE because no

corresponding referenced tuple exists in DEPARTMENT with

Dnumber = 7.

4. Operation:

Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-

05’, ‘6357 Windy Lane,Katy,

TX’, F, 28000, NULL, 4>

Result: This insertion satisfies all constraints, so it is

acceptable.

If an insertion violates one or more constraints, the default

option is to reject the insertion.It would be useful if the DBMS

could provide a reason to the user as to why the insertion was

rejected. Another option is to an attempt to correct the reason

for rejecting the insertion

The Delete Operation

The Delete operation can violate only referential integrity.

This occurs if the tuple being deleted is referenced by foreign

keys from other tuples in the database. To specify deletion, a

condition on the attributes of the relation selects the tuple (or

tuples) to be deleted.

Examples:

1. Operation:

Delete the WORKS_ON tuple with Essn = ‘999887777’ and

Pno =10. Result: This deletion is acceptable and deletes

exactly one tuple.

2. Operation:

Delete the EMPLOYEE tuple with Ssn = ‘999887777’.

Result: This deletion is not acceptable, because there are

tuples in WORKS_ON that refer to this tuple. Hence, if the

tuple in EMPLOYEE is deleted, referential integrity

violations will result.

3. Operation:

Delete the EMPLOYEE tuple with Ssn = ‘333445555’

Result: This deletion will result in even worse referential

integrity violations, because the tuple involved is referenced

by tuples from the EMPLOYEE, DEPARTMENT,

WORKS_ON, and DEPENDENT relations.

Several options are available if a deletion operation causes a

violation

1. restrict - is to reject the deletion

2. cascade, is to attempt to cascade (or propagate) the

deletion by deleting tuples that reference the tuple that is

being deleted

3. Set null or set default - is to modify the referencing

attribute values that cause the violation; each such value is

either set to NULL or changed to reference another default

valid tuple.

The Update (or Modify) operation: It is used to change the

values of one or more attributes in a tuple (or tuples) of some

relation R. It is necessary to specify a condition on the attributes

of the relation to select the tuple (or tuples) to be modified.

Examples:

1. Operation:

Update the salary of the EMPLOYEE tuple with Ssn =

‘999887777’ to 28000. Result: Acceptable.

2. Operation:

Update the Dno of the EMPLOYEE tuple with Ssn =

‘999887777’ to 7. Result: Unacceptable, because it violates

referential integrity.

3. Operation:

Update the Ssn of the EMPLOYEE tuple with Ssn =

‘999887777’ to ‘987654321’. Result: Unacceptable, because it

violates primary key constraint by repeating a value that

already exists as a primary key in another tuple; it violates

referential integrity constraints because there are other relations

that refer to the existing value of Ssn

Updating an attribute that is neither part of a primary key nor

of a foreign key usually causes no problems; the DBMS need

only check to confirm that the new value is of the correct data

type and domain.

Question 2 Discuss the correspondence between the ER model construct

and the relational model constructs. Show how each ER

model can be mapped to the relational model.

10 CO2 L2

Scheme 3M+7M

Solution Correspondence between the ER model construct and the

relational model constructs:

Relational Database Design using ER-to-Relational mapping

Step 1: Mapping of Regular Entity Types

 For each regular entity type, create a relation R that

includes all the simple attributes of E

 Include only the simple component attributes of a

composite attribute

 Choose one of the key attributes of E as the primary

key for R

 If the chosen key of E is a composite, then the set of

simple attributes that form it will together form the primary

key of R.

 If multiple keys were identified for E during the

conceptual design, the information describing the attributes

that form each additional key is kept in order to specify

secondary (unique) keys of relation R

 In our example-COMPANY database, we create the

relations EMPLOYEE, DEPARTMENT, and PROJECT

 we choose Ssn, Dnumber, and Pnumber as primary

keys for the relations EMPLOYEE, DEPARTMENT, and

PROJECT, respectively

 The relations that are created from the mapping of

entity types are called entity relations

because each tuple represents an entity instance.

Step 2: Mapping of Weak Entity Types

 For each weak entity type, create a relation R and

include all simple attributes of the entity type as attributes of

R

 Include primary key attribute of owner as foreign key

attributes of R

 In our example, we create the relation DEPENDENT

in this step to correspond to the weak entity type

DEPENDENT

 We include the primary key Ssn of the EMPLOYEE

relation—which corresponds to the owner entity type—as a

foreign key attribute of DEPENDENT; we rename it as Essn

 The primary key of the DEPENDENT relation is the

combination {Essn,Dependent_name}, because

Dependent_name is the partial key of DEPENDENT

 It is common to choose the propagate (CASCADE)

option for the referential triggered action on the foreign key in

the relation corresponding to the weak entity type, since a

weak entity has an existence dependency on its owner entity.

 This can be used for both ON UPDATE and ON

DELETE.

Step 3: Mapping of Binary 1:1 Relationship Types

For each binary 1:1 relationship type R in the ER schema,

identify the relations S and T that correspond to the entity

types participating in R

There are three possible approaches:

- foreign key approach

- merged relationship approach

- crossreference or relationship relation approach

The foreign key approach

 Choose one of the relations—S, say—and include as a

foreign key in S the primary key of T.

 It is better to choose an entity type with total

participation in R in the role of S

 Include all the simple attributes (or simple components

of composite attributes) of the 1:1 relationship type R as

attributes of S.

 In our example, we map the 1:1 relationship type by

choosing the participating entity type DEPARTMENT to

serve in the role of S because its participation in the

MANAGES relationship type is total

 We include the primary key of the EMPLOYEE

relation as foreign key in the DEPARTMENT relation and

rename it Mgr_ssn.

 We also include the simple attribute Start_date of the

MANAGES relationship type in the DEPARTMENT relation

and rename it Mgr_start_date

Merged relation approach:

 merge the two entity types and the relationship into a

single relation

 This is possible when both participations are total, as

this would indicate that the two tables will have the exact

same number of tuples at all times.

3. Cross-reference or relationship relation approach:

 set up a third relation R for the purpose of cross-

referencing the primary keys of the two relations S and T

representing the entity types.

required for binary M:N relationships

 The relation R is called a relationship relation (or

sometimes a lookup table), because each tuple in R represents

a relationship instance that relates one tuple from S with one

tuple from T

 The relation R will include the primary key attributes

of S and T as foreign keys to S and T.

 The primary key of R will be one of the two foreign

keys, and the other foreign key will be a unique key of R.

The drawback is having an extra relation, and requiring an

extra join operation when combining related tuples from the

tables.

Step 4: Mapping of Binary 1:N Relationship Types

 For each regular binary 1:N relationship type R,

identify the relation S that represents the participating entity

type at the N-side of the relationship type.

 Include as foreign key in S the primary key of the

relation T that represents the other entity type participating in

R

 Include any simple attributes (or simple components

of composite attributes) of the 1:N relationship type as

attributes of S

 In our example, we now map the 1:N relationship

types WORKS_FOR, CONTROLS, and SUPERVISION

 For WORKS_FOR we include the primary key

Dnumber of the DEPARTMENT relation as foreign key in the

EMPLOYEE relation and call it Dno.

 For SUPERVISION we include the primary key of the

EMPLOYEE relation as foreign key in the EMPLOYEE

relation itself—because the relationship is recursive—and

call it Super_ssn.

 The CONTROLS relationship is mapped to the foreign

key attribute Dnum of PROJECT, which references the

primary key Dnumber of the DEPARTMENT relation.

Step 5: Mapping of Binary M:N Relationship Types

 For each binary M:N relationship type

• Create a new relation S

• Include primary key of participating entity types as

foreign key attributes in S

• Include any simple attributes of M:N relationship type

In our example, we map the M:N relationship type

WORKS_ON by creating the relation WORKS_ON.We

include the primary keys of the PROJECT and EMPLOYEE

relations as foreign keys in WORKS_ON and rename them

Pno and Essn, respectively.

We also include an attribute Hours in WORKS_ON to

represent the Hours attribute of the relationship type.

The primary key of the WORKS_ON relation is the

combination of the foreign key attributes {Essn, Pno}.

 The propagate (CASCADE) option for the referential

triggered action should be specified on the foreign keys in the

relation corresponding to the relationship R, since each

relationship instance has an existence dependency on each of

the entities it relates. This can be used for both ON UPDATE

and ON DELETE.

Step 6: Mapping of Multivalued Attributes

 For each multivalued attribute

• Create a new relation

• Primary key of R is the combination of that Atrribute

and PK of the attached entity

• If the multivalued attribute is composite, include its

simple components

 In our example, we create a relation

DEPT_LOCATIONS

 The attribute Dlocation represents the multivalued

attribute LOCATIONS of DEPARTMENT, while

Dnumber—as foreign key—represents the primary key of the

DEPARTMENT relation.

 The primary key of DEPT_LOCATIONS is the

combination of {Dnumber, Dlocation}

 A separate tuple will exist in DEPT_LOCATIONS for

each location that a department has

 The propagate (CASCADE) option for the referential

triggered action should be specified on the foreign key in the

relation R corresponding to the multivalued attribute for both

ON UPDATE and ON DELETE.

Step 7: Mapping of N-ary Relationship Types

 For each n-ary relationship type R

• Create a new relation S to represent R

• Include primary keys of participating entity types as

foreign keys

• Include any simple attributes as attributes

 The primary key of S is usually a combination of all

the foreign keys that reference the relations representing the

participating entity types.

 For example, consider the relationship type

SUPPLY.This can be mapped to the relation SUPPLY whose

primary key is the combination of the three foreign keys

{Sname, Part_no, Proj_name}.

Question 3 Explain in detail all the operations from set theory in

relational algebra with examples for each.

10 CO2 L2

Scheme 2.5M*4

Solution UNION: The result of this operation, denoted by R 𝖴 S, is a

relation that includes all tuples that are either in R or in S or in

both R and S. Duplicate tuples are eliminated.

INTERSECTION: The result of this operation, denoted by R

∩ S, is a relation that includes all tuples that are in both R and

S.

SET DIFFERENCE (or MINUS): The result of this operation,

denoted by R – S, is a relation that includes all tuples that are

in R but not in S.

Example: Consider the following two relations:

STUDENT & INSTRUCTOR

STUDENT 𝖴 INSTRUCTOR

STUDENT ∩ INSTRUCTOR

STUDENT – INSTRUCTOR

INSTRUCTOR − STUDENT

The CARTESIAN PRODUCT (CROSS PRODUCT) Operation

The CARTESIAN PRODUCT operation—

also known as CROSS PRODUCT or CROSS

JOIN denoted by × is a binary set operation,

but the relations on which it is applied do not

have to be union compatible. This set

operation produces a new element by

combining every member (tuple) from one

relation (set) with every member (tuple) from

the other relation (set)

Example:

Consider two relations STUDENT(SNO, FNAME, LNAME)

and DETAIL(ROLLNO, AGE) below:

SNO FNAME LNAME

1 Albert Singh

2 Nora steve

ROLLNO AGE

5 18

9 21

On applying CROSS PRODUCT on STUDENT and

DETAIL:

STUDENT ✕ DETAILS

SNO FNAME LNAME ROLLNO AGE

1 Albert Singh 5 18

1 Albert Singh 9 21

2 Nora steve 5 18

2 Nora steve 9 21

Question 4 Consider the following database : Suppliers(sID, sName,

address) Parts(pID, pName, colour) Catalog(sID, pID, price)

Write relational algebra queries for the following:

i. Find all suppliers who supply both “ABC” and

“XYZ” parts.

ii. List the names and colors of all the parts supplied

by the supplier “PQR”.

iii. For every supplier find the number of parts that they

supply.

10 CO2 L3

Scheme 3M+

3.5M+

3.5M

Solution (i)

𝜋𝑆𝐼𝐷,𝑆𝑁𝐴𝑀𝐸 (𝜋𝑆𝐼𝐷 (𝜋𝑃𝐼𝐷(𝜎𝑃𝑁𝐴𝑀𝐸="𝐴𝐵𝐶" 𝐴𝑁𝐷 𝑃𝑁𝐴𝑀𝐸="𝑋𝑌𝑍")𝑃𝐴𝑅𝑇𝑆)) ⋈ 𝐶𝐴𝑇𝐴𝐿𝑂𝐺)

⋈ 𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝑅𝑆

(ii)

𝑃𝑎𝑟𝑡𝑠𝑏𝑦𝑃𝑄𝑅 ← 𝜋𝑆𝐼𝐷,𝑃𝐼𝐷(𝐶𝐴𝑇𝐴𝐿𝑂𝐺 ∗ (𝜎𝑆𝑁𝐴𝑀𝐸="𝑃𝑄𝑅" (𝑆𝑈𝑃𝑃𝐿𝐼𝐸𝑅𝑆)))

𝑅𝐸𝑆𝑈𝐿𝑇 ← 𝜋𝑃𝑁𝐴𝑀𝐸,𝐶𝑂𝐿𝑂𝑅 (𝑃𝐴𝑅𝑇𝑆 ∗ 𝑃𝑎𝑟𝑡𝑠𝑏𝑦𝑃𝑄𝑅)

(iii) 𝜋𝑃𝐼𝐷 (𝐶𝐴𝑇𝐴𝐿𝑂𝐺 ∗ 𝑃𝐴𝑅𝑇𝑆)

Question 5 Consider the following relation schema Works (Pname,

Cname, Salary) Lives (Pname, Street, City) Located-in

10 CO3 L3

(Cname, City) Where Pname = Person name, Cname =

Company name. Write the SQL queries for the following:

(i) Make a list of all company names and their cities if

an employee whose last name is ‘Scott’ is working

for them.

(ii) Retrieve people working for both “ABC” and

“XYZ” companies.

(iii) Find average salary, max salary and min salary

paid in “ABC” company

Scheme 3.5M+

3.5M+

3M

Solution (i) Select w.Cname, l.City

From Works w, Located-in l

Where w.Cname=l.Cname

And Pname= “% Scott”;

(or)

Select Cname, city

From located-in

Where Cname IN

(select Cname

From works

Where Cname= “% Scott”) ;

(ii) select Pname

From works

Where Cname= “ABC” and Cname=“XYZ”;

(iii) Select Cname,

MAX(SALARY),MIN(SALARY),AVG(SALARY)

From Works

Where Cname= “ABC”;

Question 6a Explain with syntax the six clauses of an SQL SELECT

statement? Which of the six clauses are required and which

are optional?

5 CO3 L2

Scheme 4M+1M

Solution

• The SELECT clause lists the attributes or functions to

be retrieved.

• The FROM clause specifies all relations (tables)

needed in the query, including joined relations, but not

those in nested queries.

• The WHERE clause specifies the conditions for

selecting the tuples from these relations, including join

conditions if needed.

• GROUP BY specifies grouping attributes, whereas

HAVING specifies a condition on the groups being

selected rather than on the individual tuples.

• Finally, ORDER BY specifies an order for displaying

the result of a query.

Mandatory clauses: Select, From, Where

Optional: Group By, Having, Order By

Question 6b Write a note on types of view implementation. 5 CO3 L2

Scheme 2.5M+

2.5M

Solution The problem of efficiently implementing a view for querying

is complex. Two main approaches have been suggested.

 One strategy, called query modification, involves

modifying or transforming the view query (submitted by the

user) into a query on the underlying base tables. For example,

the query

SELECT Fname, Lname

FROM WORKS_ON1

WHERE Pname=‘ProductX’;

would be automatically modified to the following query by the

DBMS:

SELECT Fname, Lname

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE Ssn=Essn AND Pno=Pnumber

AND Pname=‘ProductX’;

The disadvantage of this approach is that it is inefficient for

views defined via complex queries that are time-consuming to

execute, especially if multiple queries are going to be applied

to the same view within a short period of time.

 The second strategy, called view materialization,

involves physically creating a temporary view table when the

view is first queried and keeping that table on the assumption

that other queries on the view will follow. In this case, an

efficient strategy for automatically updating the view table

when the base tables are updated must be developed in order to

keep the view up-to-date.

Techniques using the concept of incremental update have been

developed for this purpose, where the DBMS can determine

what new tuples must be inserted, deleted, or modified in a

materialized view table when a database update is applied to

one of the defining base tables.

The view is generally kept as a materialized (physically stored)

table as long as it is being queried. If the view is not queried for

a certain period of time, the system may then automatically

remove the physical table and recompute it from scratch when

future queries reference the view.

