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(a) 

Define a Regular Expression. Obtain the regular expression for the following languages.  

i) L={a2nb2m+1 | n≥ 0,m≥0 } 

(aa)*(bb)*b 

ii) All strings containing no more than 3 a’s over Σ = {a,b}. 

𝑏∗(𝑎 ∪ 𝜀)𝑏∗(𝑎 ∪ 𝜀)𝑏∗(𝑎 ∪ 𝜀)𝑏∗ 

[05] CO2 L2 

   

(b) 
State pumping lemma for regular languages. And show that L= {wwR | w 𝜖(0+1)*} is not 
regular. 
 
For the language to be proved that it is regular, for any string of form w = xyz, 3 conditions 
must hold. 
|xy|≤ k, i.e. k-1 characters can be read without revisiting any states, but kth character 
must take DFSM M to a state it has visited before. 

y ≠ ε  : Since M is deterministic, no transitions on ε 

∀q ≥ 0 (xyqz ∈ L) : y can be pumped (q = 0 or q>1).  The resulting string should be in L 

 
Let us take s = wkw_rk, so the |s| = 2k and k=|s| / 2 
Let us take a string of length 6. 
Let s = aabbaa 
k  = 3 
Let’s split the string as per the rules. 

|xy|≤ 3 and y ≠ ε   

a ab baa 

x y z 

 
Now lets pump y 2times 
The resulting string  is aaba bbaa ∉ 𝐿 = 𝑤𝑤𝑅 
Hence we have proved that the language is not regular. 
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(a) 
Obtain the regular expression from the following FSM using state elimination method.  

 

 04] CO1 L1 



 

 

Create a new start state as initial state has incoming transitions. Connect new start state to existing 

start state via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

Create a new final state as there are 2 final states and also there are outgoing transitions from 

final states.  Connect existing final states to new final state via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠. Make existing 

final states as non-final. 

We’ll rename q0 to 1 and q1 to 2. 

Remove q2 as it is a dead state. 

 

 

Rip 2 

1-2-f 

 

Rip 1 

R(s,f) = R(s,f) ∪ R(s,rip)R(rip,rip)*R(rip,f) 

= φ ∪ ε0*(ε∪11*) = 0* ∪ 011* 

 

 

 

   

(b)  

 

Write a Regular Grammar for the given language. 

i) Strings of 0’s and 1’s having three consecutive 0’s.  

 

[06] CO1 L3 



 

 
𝑆 ⟶ 1𝑆 | 0𝐴 

𝐴 ⟶ 1𝑆 | 0𝐵 

𝐵 ⟶ 1𝑆 | 0𝐶 

𝐶 ⟶ 0𝐶 | 1𝐶|𝜀 

𝐺 = (𝑉, Σ, 𝑅, 𝑆) 

𝐺 = ({𝑆, 𝐴, 𝐵, 𝐶}, {0,1}, 𝑅, 𝑆) 

w = 10001 

𝑆 ⟹ 1𝑆 ⟹ 10𝐴 ⟹ 100𝐵 ⟹ 1000𝐶 ⟹ 10001𝐶 ⟹ 10001 

 

ii)  Strings of a’s and b’s with at least one a. 

 

 
𝑆 ⟶ 𝑎𝐴 | 𝑏𝑆 

𝐴 ⟶ 𝑎𝐴 | 𝑏𝐵 |𝜀 

𝐺 = ({𝑆, 𝐴, 𝐵}, {𝑎, 𝑏}, 𝑅, 𝑆) 

w = baab 

𝑆 ⟹ 𝑏𝑆 ⟹ 𝑏𝑎𝐴 ⟹ 𝑏𝑎𝑎𝐴 ⟹ 𝑏𝑎𝑎𝑏𝐴 ⟹ 𝑏𝑎𝑎𝑏 
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(a)  

Convert the regular expression a* +b*+c* to NDFSM. 

Using Kleene’s theorem 

 

Let’s design machine for primitive types. 

M1 for a, M2 for b, M3 for c 

  

 

 

Let’s design M4 for a*, M5 for b*, M6 for c* 

According to the theorem for Kleene closure, we create a new start state, make it accepting and 

connect the new start state to existing start state via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.   

Next we connect ever accepting state in the machine to the old start state of the machine via 𝜀 −
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

 

 

 

 

 

M4 

[05] CO2 L3 



 

 

M5 

 

M6 

 

 

Next we design M7 for a* +b*+c* 

According to the theorem, we create a new start state, connect to each of the machines via 𝜀 −
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.  The final states in the existing machines will also be the final state of the resulting 

machine 

 

 
   

(b) 
Prove that regular languages are closed under Union and Intersection. 

 

Proof that regular languages are closed under union 

The proof for regular languages are closed under union is by construction. Let’s 

take a regular expression a ∪ b. We first construct FSM M1 and M2 to accept the 

primitives a and b. 

 

The proof for regular languages are closed under union is by construction. Let’s 

take a regular expression a ∪ b. We first construct FSM M1 and M2 to accept the primitives a 

and b. 

 M1 that accepts RE a 

 M2 that accepts RE b 
 

  

[05] CO2 L2 



 

According to Kleene’s theorem, for union of two languages that are regular, M1 = (k1, Σ, δ1, s1, 

A1) and M2 = (k2, Σ, δ2, s2, A2), we construct a new FSM, M3 = (k3, Σ, δ3, s3, A3) such that 

L(M3) = L(M1) ∪L(M2). We rename states of M1 and M2 such that k1 ∩ k2 = Φ. 

Create a new start state s3 and connect the start states of M1 and M2 via ε- transitions. So M3 = 

({s3} ∪ k1∪k2, Σ, δ3, s3. A1∪A2) where δ3 = δ1 ∪δ2 ∪ {(s3, ε), s1) ∪ {(s3, ε), s2). 

 

So for L(M3) = a ∪ b, we get the machine where M3 = ({s3, s1, s2, f1,f2}, {a,b}, 

{((s3,ε),s1), ((s3,ε),s2), ((s1,a),f1), ((s2,b),f2)}, s3, {f1,f2}. 

 
  

Proof that regular languages are closed under Intersection 

Given languages L and M, in order to prove that L∩M is regular, we need to prove that it 

is closed under  complement and union.  We have proved that the language is closed under 

union by construction. 

Using DeMorgan’s Laws we write intersection in terms of complement and union. 

L ∩ M = ¬ ¬ ( L ∩ M) = ¬ (¬ L ∪ ¬ M) 

Below is proof that regular languages are closed under complement by construction. 

As we have proved by construction that union and complement are closed under construction, 

we infer using the above equation that regular languages are also closed under intersection. 

 

Proof that Regular Languages are closed under complement 

 

If L is a regular language, there exists a DFSM M1 = (k, Σ, δ, s, A) that accepts L. The 

complement of L, ¬L will be accepted by M2 = (k, Σ, δ, s, k-A). 

Any NDFSM has to be converted to an equivalent DFSM, then the accepting states have to be 

swapped with the non-accepting states. 

For example, consider that language L that accepts strings that begin with ‘ab’ over the alphabet, 

Σ={a,b}. The following DFSM, M = ({q0, q1, q2, q3}, {a,b}, 

{((q0,a),q1), ((q0,b),q3), ((q1,a),q3), ((q1,b),q2), ((q2,a),q2), ((q2,b),q2), 

((q3,a),q3), ((q3,b),q3) }, q0, {q2} 

 

 
The following DFSM accepts the complement of L, ¬L(M) 

 



 

 

Hence, we proved the regular languages are closed under complement. The Accepting 

states are k-A. 

The following DFSM, not_M = ({q0, q1, q2, q3}, {a,b}, {((q0,a),q1), ((q0,b),q3), ((q1,a),q3), 

((q1,b),q2), ((q2,a),q2), ((q2,b),q2), ((q3,a),q3), ((q3,b),q3) }, q0, 

{q0,q1,q3} 
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(a) 

Prove that language L={an| n is prime} is not regular. 

 

For the language to be proved that it is regular, for any string of form w = xyz, 3 conditions 
must hold. 
|xy|≤ k, i.e. k-1 characters can be read without revisiting any states, but kth character 
must take DFSM M to a state it has visited before. 

y ≠ ε  : Since M is deterministic, no transitions on ε 

∀q ≥ 0 (xyqz ∈ L) : y can be pumped (q = 0 or q>1).  The resulting string should be in 

L 
 
Let us take w= ak, so the |w| = k and k=|w|  
Let us take a string of length 5. 
Let w = aaaaa 
k  = 5 
Let’s split the string as per the rules. 

|xy|≤ 5 and y ≠ ε   

a aaa a 

x y z 

 
Now lets pump y 2 times 
The resulting string  is a  a aaa aaa a  = a8∉ 𝐿 = 𝑎𝑝  
Hence we have proved that the language is not regular. 
 

 

[04] CO1 L2 

   

(b)  
Let L be the language accepted by the finite state machine. 

 
 Indicate, for each of the following regular expressions, whether it correctly describes  

L:  

L (a U ba)bb*a.  

b. (Ɛ U b)a(bb*a)*.  

c. ba U ab*a.  

d. (a U ba)(bb*a)*.  

[06] CO2 L3 



 

 
 

Let’s find RE based on state elimination. 

 

Create new final state as existing final state has outgoing transitions. 

Let’s rename states q0 – s, q1-1, q2-2, q3-3 

 

 
Now let’s rip 2 

1-2-1 

 
Now let’s rip 3 

s-3-1 

R(s,1) = R(s,1) ∪R(s,3)R(3,3)*R(3,1)  

           = a ∪ba 

 



 

Now Rip 1 
R(s,f) = R(s,f) ∪ R(s,1)R(1,1)*R(1,f) 

            = φ ∪ (a ∪ba) (bb*a)*  

            = (a∪ba )(bb*a)* 
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(a) 
Consider a Grammar G with production. 

S→AbB 

A→aA|Ԑ 

B→aB|bB|Ԑ . 

Obtain the left most Derivation ,rightmost Derivation and parse tree for the string 

aaabab 

Left most derivation 

 

𝑆 ⟹ 𝐴𝑏𝐵 ⟹ 𝑎𝐴𝑏𝐵 ⟹ 𝑎𝑎𝐴𝑏𝐵 ⟹ 𝑎𝑎𝑎𝐴𝑏𝐵 ⟹ 𝑎𝑎𝑎𝑏𝐵 ⟹ 𝑎𝑎𝑎𝑏𝑎𝐵 ⟹ 𝑎𝑎𝑎𝑏𝑎𝑏𝐵
⟹ 𝑎𝑎𝑎𝑏𝑎𝑏 

 

Rightmost derivation 

𝑆 ⟹ 𝐴𝑏𝐵 ⟹ 𝐴𝑏𝑎𝐵 ⟹ 𝐴𝑏𝑎𝑏𝐵 ⟹ 𝐴𝑏𝑎𝑏 ⟹ 𝑎𝐴𝑏𝑎𝑏 ⟹ 𝑎𝑎𝐴𝑏𝑎𝑏 ⟹ 𝑎𝑎𝑎𝐴𝑏𝑎𝑏 ⟹ 𝑎𝑎𝑎𝑏𝑎𝑏 

 

Parse Tree 

 

 
 

 

[06] CO3 L2 

   

(b)  

Convert the regular expression a* (b+a) to NDFSM 

 

According to Kleene’s theorem, 

First we give FSM for primitive types a and b 

 
M1 for accepting RE a 

 
M2 for accepting RE b 

 

[04] CO2 L3 

S 

A 
B 

   a          a         a          ε        b              a             b            ε 

B 

B 

A 

A 

A 



 

M3 for RE a* 

According to the theorem for Kleene closure, we create a new start state, make it accepting and 

connect the new start state to existing start state via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.   

Next we connect ever accepting state in the machine to the old start state of the machine via 𝜀 −
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

M3 for accepting RE a* 

M4 for RE b+a 

According to the theorem, for union, we create a new start state, connect to each of the machines 

via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.  The final states in the existing machines will also be the final state of the 

resulting machine 

M4 for accepting RE b+a 

M5 for accepting a*(b+a) 

According to the theorem, for concatenation, we connect every accepting state of the first 

machine to the initial state of the second machine via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠.  Then we make accepting 

states of first machine as non-accepting.  The accepting state of the final machine will be the 

accepting states of the second machine. 
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(a)           

Write the regular expression for the DFSM given in Figure 1 using state elimination 

method. 

[06] CO2 L2 

   

(b) 

 
 

As initial state has incoming transitions, we create new initial state, connect new start state to 

existing initial state via ε-transition. 

As final state has outgoing transition, we create new final state, connect existing final state to new 

final state via ε-transition. We make existing final state as non-accepting. 

[05] CO2 L3 



 

 
Now we pick states to rip other than s and f 

Rip B 

A-B-A 

C-B-C 

A-B-C 

C-B-A 

 

R(A,A) = R(A,A) ∪R(A,B)R(B,B)*R(B,A) 

             = 0 ∪ 1φ*1 = 1ε1=0 ∪ 11 

R(C,C) = R(C,C) ∪ R(C,B)R(B,B)*R(B,C) 
              = 0 ∪ 1 φ* 0 = 1 ε 0 = 0 ∪ 10 
 
R(A,C) = 10      R(C,A) = 11 
 

 
Rip A 
s-A-C 
C-A-C 
 
R(s,C) =  R(s,C)∪ R(s,A)R(s,A)*R(A,C) 
             = φ ∪ ε (0 ∪ 11)* 10 = (0 ∪ 11)* 10 
R(C,C) = R(C,C) ∪ R(C,A)R(A,A)*R(A,C) 
              = 0 ∪ 10 ∪ 11 (0 ∪ 11)* 10 
 

 
Rip C 
 
R(s,f) = R(s,f) ∪ R(s,C) R(C,C)* R(C,f) 
            = φ ∪  (0 ∪ 11)* 10  (0 ∪ 10 ∪ 11 (0 ∪ 11)* 10)* ε 
            = (0 ∪ 11)* 10  (0 ∪ 10 ∪ 11 (0 ∪ 11)* 10)* 
 



 

 
 

b Write the regular expression for the following language. 

(i) Strings of a’s and b’s that contains abb as a substring over {a,b}* 

 

(a ∪ b)*  abb (a ∪ b)* 

(ii) String of a’s and b’s whose 4th symbol from the left is b. 

 

(a ∪ b) (a ∪ b) (a ∪ b) b (a ∪ b)*  
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(a) 

Define CFG. Consider a Grammar G with production. 

E→ +EE | *EE | -EE | x |y 

Obtain the left most Derivation ,rightmost Derivation and parse tree for the string 

*+-xyxy 

 

Leftmost Derivation 

𝐸 ⟹∗ 𝐸𝐸 ⟹∗ +𝐸𝐸𝐸 ⟹∗ + − 𝐸𝐸𝐸𝐸 ⟹∗ + − 𝑥𝐸𝐸𝐸 ⟹∗ + − 𝑥𝑦𝐸𝐸 ⟹∗ + − 𝑥𝑦𝑥𝐸 
⟹∗ + − 𝑥𝑦𝑥𝑦 

Rightmost Derivation 

𝐸 ⟹∗ 𝐸𝐸 ⟹∗ 𝐸𝑦 ⟹∗ +𝐸𝐸𝑦 ⟹∗ +𝐸𝑥𝑦 ⟹∗ + − 𝐸𝐸𝑥𝑦 ⟹∗ + − 𝐸𝑦𝑥𝑦 ⟹∗ + − 𝑥𝑦𝑥𝑦 

Parse Tree 

 
 

[06] CO 

3 

L3 

  b   Write the regular grammar for the following language. 

(i) L={W | W ∈ {a,b}*, |W| mod 3 = 2} 
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L3 

 

E 

E 

*        +       -                          x         y           x        y 

E 

E E 

E E 



 

 
𝑆 ⟶ 𝑎𝐴 | 𝑏𝐴  
𝐴 ⟶ 𝑎𝐵 | 𝑏𝐵 

𝐵 ⟶ 𝑎𝑆 | 𝑏𝑆 |𝜀 

 

𝐺 = (𝑉, Σ, 𝑅, 𝑆) 

G = ({S,A,B}, {a,b}, R,S) 

 

w= ababb  |w| mod 3 = 5 mod 3 = 2 

𝑆 ⟹ 𝑎𝐴 ⟹ 𝑎𝑏𝐵 ⟹ 𝑎𝑏𝑎𝑆 ⟹ 𝑎𝑏𝑎𝑏𝐴 ⟹ 𝑎𝑏𝑎𝑏𝑏 

 

(ii) String of a’s and b’s ending with ba. 

Solution 1 – from NDFSM 

 
𝑆 ⟶ 𝑎𝑆 | 𝑏𝑆 |𝑏𝐴 

𝐴 ⟶ 𝑎𝐵 

𝐵 ⟶ 𝜀 

𝐺 = (𝑉, Σ, 𝑅, 𝑆) 

G = ({S,A,B},{a,b},R, S) 

 

w = abba 

𝑆 ⟹ 𝑎𝑆 ⟹ 𝑎𝑏𝑆 ⟹ 𝑎𝑏𝑏𝐴 ⟹ 𝑎𝑏𝑏𝑎𝐵 ⟹ 𝑎𝑏𝑏𝑎 

 

Solution 2 design DFSM and write grammar 

 
𝑆 ⟶ 𝑎𝑆 | 𝑏𝐴 

𝐴 ⟶ 𝑎𝐵 | 𝑏𝐴 

𝐵 ⟶ 𝑎𝑆 | 𝑏𝐴 |𝜀 

𝐺 = (𝑉, Σ, 𝑅, 𝑆) 

G =  ( {S,A,B}, {a,b}, R, S) 

 

w =abba 

𝑆 ⟹ 𝑎𝑆 ⟹ 𝑎𝑏𝐴 ⟹ 𝑎𝑏𝑏𝐴 ⟹ 𝑎𝑏𝑏𝑎𝐵 ⟹ 𝑎𝑏𝑏𝑎 
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CO1 

Acquire fundamental understanding of 
the core concepts in automata theory 
and Theory of Computation 
 

1,2,3,4
,5 

2 3 - - - 2 - - - - - - - 3  3 

CO2 

Learn how to translate between 
different models of Computation (e.g., 
Deterministic and Non-deterministic 
and Software models). 
 

1,2 

2 3 2 2 2 2 - - - - - - - 3 3 3 

CO3 

Design Grammars and Automata 
(recognizers) for different language 
classes and become knowledgeable 
about restricted models of 
Computation (Regular, Context Free) 
and their relative powers. 
 

2,3 

2 3 2 2 2 2 - - - - - - 2 - 3 - 

CO4 

Develop skills in formal reasoning and 
reduction of a problem to a formal 
model, with an       emphasis on 
semantic precision and conciseness. 
 

3,4 

2 3 2 2 - 2 - - - - - - 2 2 3 3 

CO5 
Classify a problem with respect to 
different models of Computation 
 

5 
2 3 2 2 - 3 - - - - - - 3 3 3 3 

 

 

COGNITIVE 

LEVEL 
REVISED BLOOMS TAXONOMY KEYWORDS 

L1 
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, 

when, where, etc.  

L2 
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, 

discuss, extend  

L3 
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, 

change, classify, experiment, discover.  

L4 
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, 

infer.  

L5 
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, 

discriminate, support, conclude, compare, summarize.  

 

 



 

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) 
CORRELATION 

LEVELS 

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation 

PO2 Problem analysis PO8 Ethics 1 Slight/Low 

PO3 Design/development of solutions PO9 Individual and team work 2 
Moderate/ 

Medium 

PO4 
Conduct investigations of 

complex problems 
PO10 Communication 3 

Substantial/ 

High 

PO5 Modern tool usage PO11 Project management and finance  

PO6 The Engineer and society PO12 Life-long learning  

PSO1 Develop applications using different stacks of web and programming technologies 

PSO2 Design and develop secure, parallel,  distributed, networked, and digital systems 

PSO3 Apply software engineering methods to design, develop, test and manage software systems. 

PSO4 Develop  intelligent applications for business and industry  

 

 


