

USN

Internal Assessment Test 2 – Dec 2022

Sub: Automata Theory and Computability
Sub

Code:
18CS54 Branch: CSE

Date: 2/12/2022 Duration: 90 mins Max Marks: 50
Sem /

Sec:
5 A,B,C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1

(a)

Define a Regular Expression. Obtain the regular expression for the following languages.

i) L={a2nb2m+1 | n≥ 0,m≥0 }

(aa)*(bb)*b

ii) All strings containing no more than 3 a’s over Σ = {a,b}.

𝑏∗(𝑎 ∪ 𝜀)𝑏∗(𝑎 ∪ 𝜀)𝑏∗(𝑎 ∪ 𝜀)𝑏∗

[05] CO2 L2

(b)
State pumping lemma for regular languages. And show that L= {wwR | w 𝜖(0+1)*} is not
regular.

For the language to be proved that it is regular, for any string of form w = xyz, 3 conditions
must hold.
|xy|≤ k, i.e. k-1 characters can be read without revisiting any states, but kth character
must take DFSM M to a state it has visited before.

y ≠ ε : Since M is deterministic, no transitions on ε

∀q ≥ 0 (xyqz ∈ L) : y can be pumped (q = 0 or q>1). The resulting string should be in L

Let us take s = wkw_rk, so the |s| = 2k and k=|s| / 2
Let us take a string of length 6.
Let s = aabbaa
k = 3
Let’s split the string as per the rules.

|xy|≤ 3 and y ≠ ε

a ab baa

x y z

Now lets pump y 2times
The resulting string is aaba bbaa ∉ 𝐿 = 𝑤𝑤𝑅
Hence we have proved that the language is not regular.

[06]

CO1 L3

2

(a)
Obtain the regular expression from the following FSM using state elimination method.

 04] CO1 L1

Create a new start state as initial state has incoming transitions. Connect new start state to existing

start state via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

Create a new final state as there are 2 final states and also there are outgoing transitions from

final states. Connect existing final states to new final state via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠. Make existing

final states as non-final.

We’ll rename q0 to 1 and q1 to 2.

Remove q2 as it is a dead state.

Rip 2

1-2-f

Rip 1

R(s,f) = R(s,f) ∪ R(s,rip)R(rip,rip)*R(rip,f)

= φ ∪ ε0*(ε∪11*) = 0* ∪ 011*

(b)

Write a Regular Grammar for the given language.

i) Strings of 0’s and 1’s having three consecutive 0’s.

[06] CO1 L3

𝑆 ⟶ 1𝑆 | 0𝐴

𝐴 ⟶ 1𝑆 | 0𝐵

𝐵 ⟶ 1𝑆 | 0𝐶

𝐶 ⟶ 0𝐶 | 1𝐶|𝜀

𝐺 = (𝑉, Σ, 𝑅, 𝑆)

𝐺 = ({𝑆, 𝐴, 𝐵, 𝐶}, {0,1}, 𝑅, 𝑆)

w = 10001

𝑆 ⟹ 1𝑆 ⟹ 10𝐴 ⟹ 100𝐵 ⟹ 1000𝐶 ⟹ 10001𝐶 ⟹ 10001

ii) Strings of a’s and b’s with at least one a.

𝑆 ⟶ 𝑎𝐴 | 𝑏𝑆

𝐴 ⟶ 𝑎𝐴 | 𝑏𝐵 |𝜀

𝐺 = ({𝑆, 𝐴, 𝐵}, {𝑎, 𝑏}, 𝑅, 𝑆)

w = baab

𝑆 ⟹ 𝑏𝑆 ⟹ 𝑏𝑎𝐴 ⟹ 𝑏𝑎𝑎𝐴 ⟹ 𝑏𝑎𝑎𝑏𝐴 ⟹ 𝑏𝑎𝑎𝑏

3

(a)

Convert the regular expression a* +b*+c* to NDFSM.

Using Kleene’s theorem

Let’s design machine for primitive types.

M1 for a, M2 for b, M3 for c

Let’s design M4 for a*, M5 for b*, M6 for c*

According to the theorem for Kleene closure, we create a new start state, make it accepting and

connect the new start state to existing start state via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.

Next we connect ever accepting state in the machine to the old start state of the machine via 𝜀 −
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

M4

[05] CO2 L3

M5

M6

Next we design M7 for a* +b*+c*

According to the theorem, we create a new start state, connect to each of the machines via 𝜀 −
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛. The final states in the existing machines will also be the final state of the resulting

machine

(b)
Prove that regular languages are closed under Union and Intersection.

Proof that regular languages are closed under union

The proof for regular languages are closed under union is by construction. Let’s

take a regular expression a ∪ b. We first construct FSM M1 and M2 to accept the

primitives a and b.

The proof for regular languages are closed under union is by construction. Let’s

take a regular expression a ∪ b. We first construct FSM M1 and M2 to accept the primitives a

and b.

 M1 that accepts RE a

 M2 that accepts RE b

[05] CO2 L2

According to Kleene’s theorem, for union of two languages that are regular, M1 = (k1, Σ, δ1, s1,

A1) and M2 = (k2, Σ, δ2, s2, A2), we construct a new FSM, M3 = (k3, Σ, δ3, s3, A3) such that

L(M3) = L(M1) ∪L(M2). We rename states of M1 and M2 such that k1 ∩ k2 = Φ.

Create a new start state s3 and connect the start states of M1 and M2 via ε- transitions. So M3 =

({s3} ∪ k1∪k2, Σ, δ3, s3. A1∪A2) where δ3 = δ1 ∪δ2 ∪ {(s3, ε), s1) ∪ {(s3, ε), s2).

So for L(M3) = a ∪ b, we get the machine where M3 = ({s3, s1, s2, f1,f2}, {a,b},

{((s3,ε),s1), ((s3,ε),s2), ((s1,a),f1), ((s2,b),f2)}, s3, {f1,f2}.

Proof that regular languages are closed under Intersection

Given languages L and M, in order to prove that L∩M is regular, we need to prove that it

is closed under complement and union. We have proved that the language is closed under

union by construction.

Using DeMorgan’s Laws we write intersection in terms of complement and union.

L ∩ M = ¬ ¬ (L ∩ M) = ¬ (¬ L ∪ ¬ M)

Below is proof that regular languages are closed under complement by construction.

As we have proved by construction that union and complement are closed under construction,

we infer using the above equation that regular languages are also closed under intersection.

Proof that Regular Languages are closed under complement

If L is a regular language, there exists a DFSM M1 = (k, Σ, δ, s, A) that accepts L. The

complement of L, ¬L will be accepted by M2 = (k, Σ, δ, s, k-A).

Any NDFSM has to be converted to an equivalent DFSM, then the accepting states have to be

swapped with the non-accepting states.

For example, consider that language L that accepts strings that begin with ‘ab’ over the alphabet,

Σ={a,b}. The following DFSM, M = ({q0, q1, q2, q3}, {a,b},

{((q0,a),q1), ((q0,b),q3), ((q1,a),q3), ((q1,b),q2), ((q2,a),q2), ((q2,b),q2),

((q3,a),q3), ((q3,b),q3) }, q0, {q2}

The following DFSM accepts the complement of L, ¬L(M)

Hence, we proved the regular languages are closed under complement. The Accepting

states are k-A.

The following DFSM, not_M = ({q0, q1, q2, q3}, {a,b}, {((q0,a),q1), ((q0,b),q3), ((q1,a),q3),

((q1,b),q2), ((q2,a),q2), ((q2,b),q2), ((q3,a),q3), ((q3,b),q3) }, q0,

{q0,q1,q3}

4

(a)

Prove that language L={an| n is prime} is not regular.

For the language to be proved that it is regular, for any string of form w = xyz, 3 conditions
must hold.
|xy|≤ k, i.e. k-1 characters can be read without revisiting any states, but kth character
must take DFSM M to a state it has visited before.

y ≠ ε : Since M is deterministic, no transitions on ε

∀q ≥ 0 (xyqz ∈ L) : y can be pumped (q = 0 or q>1). The resulting string should be in

L

Let us take w= ak, so the |w| = k and k=|w|
Let us take a string of length 5.
Let w = aaaaa
k = 5
Let’s split the string as per the rules.

|xy|≤ 5 and y ≠ ε

a aaa a

x y z

Now lets pump y 2 times
The resulting string is a a aaa aaa a = a8∉ 𝐿 = 𝑎𝑝
Hence we have proved that the language is not regular.

[04] CO1 L2

(b)
Let L be the language accepted by the finite state machine.

 Indicate, for each of the following regular expressions, whether it correctly describes

L:

L (a U ba)bb*a.

b. (Ɛ U b)a(bb*a)*.

c. ba U ab*a.

d. (a U ba)(bb*a)*.

[06] CO2 L3

Let’s find RE based on state elimination.

Create new final state as existing final state has outgoing transitions.

Let’s rename states q0 – s, q1-1, q2-2, q3-3

Now let’s rip 2

1-2-1

Now let’s rip 3

s-3-1

R(s,1) = R(s,1) ∪R(s,3)R(3,3)*R(3,1)

 = a ∪ba

Now Rip 1
R(s,f) = R(s,f) ∪ R(s,1)R(1,1)*R(1,f)

 = φ ∪ (a ∪ba) (bb*a)*

 = (a∪ba)(bb*a)*

5

(a)
Consider a Grammar G with production.

S→AbB

A→aA|Ԑ

B→aB|bB|Ԑ .

Obtain the left most Derivation ,rightmost Derivation and parse tree for the string

aaabab

Left most derivation

𝑆 ⟹ 𝐴𝑏𝐵 ⟹ 𝑎𝐴𝑏𝐵 ⟹ 𝑎𝑎𝐴𝑏𝐵 ⟹ 𝑎𝑎𝑎𝐴𝑏𝐵 ⟹ 𝑎𝑎𝑎𝑏𝐵 ⟹ 𝑎𝑎𝑎𝑏𝑎𝐵 ⟹ 𝑎𝑎𝑎𝑏𝑎𝑏𝐵
⟹ 𝑎𝑎𝑎𝑏𝑎𝑏

Rightmost derivation

𝑆 ⟹ 𝐴𝑏𝐵 ⟹ 𝐴𝑏𝑎𝐵 ⟹ 𝐴𝑏𝑎𝑏𝐵 ⟹ 𝐴𝑏𝑎𝑏 ⟹ 𝑎𝐴𝑏𝑎𝑏 ⟹ 𝑎𝑎𝐴𝑏𝑎𝑏 ⟹ 𝑎𝑎𝑎𝐴𝑏𝑎𝑏 ⟹ 𝑎𝑎𝑎𝑏𝑎𝑏

Parse Tree

[06] CO3 L2

(b)

Convert the regular expression a* (b+a) to NDFSM

According to Kleene’s theorem,

First we give FSM for primitive types a and b

M1 for accepting RE a

M2 for accepting RE b

[04] CO2 L3

S

A
B

 a a a ε b a b ε

B

B

A

A

A

M3 for RE a*

According to the theorem for Kleene closure, we create a new start state, make it accepting and

connect the new start state to existing start state via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛.

Next we connect ever accepting state in the machine to the old start state of the machine via 𝜀 −
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

M3 for accepting RE a*

M4 for RE b+a

According to the theorem, for union, we create a new start state, connect to each of the machines

via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛. The final states in the existing machines will also be the final state of the

resulting machine

M4 for accepting RE b+a

M5 for accepting a*(b+a)

According to the theorem, for concatenation, we connect every accepting state of the first

machine to the initial state of the second machine via 𝜀 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠. Then we make accepting

states of first machine as non-accepting. The accepting state of the final machine will be the

accepting states of the second machine.

6

(a)

Write the regular expression for the DFSM given in Figure 1 using state elimination

method.

[06] CO2 L2

(b)

As initial state has incoming transitions, we create new initial state, connect new start state to

existing initial state via ε-transition.

As final state has outgoing transition, we create new final state, connect existing final state to new

final state via ε-transition. We make existing final state as non-accepting.

[05] CO2 L3

Now we pick states to rip other than s and f

Rip B

A-B-A

C-B-C

A-B-C

C-B-A

R(A,A) = R(A,A) ∪R(A,B)R(B,B)*R(B,A)

 = 0 ∪ 1φ*1 = 1ε1=0 ∪ 11

R(C,C) = R(C,C) ∪ R(C,B)R(B,B)*R(B,C)
 = 0 ∪ 1 φ* 0 = 1 ε 0 = 0 ∪ 10

R(A,C) = 10 R(C,A) = 11

Rip A
s-A-C
C-A-C

R(s,C) = R(s,C)∪ R(s,A)R(s,A)*R(A,C)
 = φ ∪ ε (0 ∪ 11)* 10 = (0 ∪ 11)* 10
R(C,C) = R(C,C) ∪ R(C,A)R(A,A)*R(A,C)
 = 0 ∪ 10 ∪ 11 (0 ∪ 11)* 10

Rip C

R(s,f) = R(s,f) ∪ R(s,C) R(C,C)* R(C,f)
 = φ ∪ (0 ∪ 11)* 10 (0 ∪ 10 ∪ 11 (0 ∪ 11)* 10)* ε
 = (0 ∪ 11)* 10 (0 ∪ 10 ∪ 11 (0 ∪ 11)* 10)*

b Write the regular expression for the following language.

(i) Strings of a’s and b’s that contains abb as a substring over {a,b}*

(a ∪ b)* abb (a ∪ b)*

(ii) String of a’s and b’s whose 4th symbol from the left is b.

(a ∪ b) (a ∪ b) (a ∪ b) b (a ∪ b)*

7

(a)

Define CFG. Consider a Grammar G with production.

E→ +EE | *EE | -EE | x |y

Obtain the left most Derivation ,rightmost Derivation and parse tree for the string

*+-xyxy

Leftmost Derivation

𝐸 ⟹∗ 𝐸𝐸 ⟹∗ +𝐸𝐸𝐸 ⟹∗ + − 𝐸𝐸𝐸𝐸 ⟹∗ + − 𝑥𝐸𝐸𝐸 ⟹∗ + − 𝑥𝑦𝐸𝐸 ⟹∗ + − 𝑥𝑦𝑥𝐸
⟹∗ + − 𝑥𝑦𝑥𝑦

Rightmost Derivation

𝐸 ⟹∗ 𝐸𝐸 ⟹∗ 𝐸𝑦 ⟹∗ +𝐸𝐸𝑦 ⟹∗ +𝐸𝑥𝑦 ⟹∗ + − 𝐸𝐸𝑥𝑦 ⟹∗ + − 𝐸𝑦𝑥𝑦 ⟹∗ + − 𝑥𝑦𝑥𝑦

Parse Tree

[06] CO

3

L3

 b Write the regular grammar for the following language.

(i) L={W | W ∈ {a,b}*, |W| mod 3 = 2}

[04] CO

3

L3

E

E

* + - x y x y

E

E E

E E

𝑆 ⟶ 𝑎𝐴 | 𝑏𝐴
𝐴 ⟶ 𝑎𝐵 | 𝑏𝐵

𝐵 ⟶ 𝑎𝑆 | 𝑏𝑆 |𝜀

𝐺 = (𝑉, Σ, 𝑅, 𝑆)

G = ({S,A,B}, {a,b}, R,S)

w= ababb |w| mod 3 = 5 mod 3 = 2

𝑆 ⟹ 𝑎𝐴 ⟹ 𝑎𝑏𝐵 ⟹ 𝑎𝑏𝑎𝑆 ⟹ 𝑎𝑏𝑎𝑏𝐴 ⟹ 𝑎𝑏𝑎𝑏𝑏

(ii) String of a’s and b’s ending with ba.

Solution 1 – from NDFSM

𝑆 ⟶ 𝑎𝑆 | 𝑏𝑆 |𝑏𝐴

𝐴 ⟶ 𝑎𝐵

𝐵 ⟶ 𝜀

𝐺 = (𝑉, Σ, 𝑅, 𝑆)

G = ({S,A,B},{a,b},R, S)

w = abba

𝑆 ⟹ 𝑎𝑆 ⟹ 𝑎𝑏𝑆 ⟹ 𝑎𝑏𝑏𝐴 ⟹ 𝑎𝑏𝑏𝑎𝐵 ⟹ 𝑎𝑏𝑏𝑎

Solution 2 design DFSM and write grammar

𝑆 ⟶ 𝑎𝑆 | 𝑏𝐴

𝐴 ⟶ 𝑎𝐵 | 𝑏𝐴

𝐵 ⟶ 𝑎𝑆 | 𝑏𝐴 |𝜀

𝐺 = (𝑉, Σ, 𝑅, 𝑆)

G = ({S,A,B}, {a,b}, R, S)

w =abba

𝑆 ⟹ 𝑎𝑆 ⟹ 𝑎𝑏𝐴 ⟹ 𝑎𝑏𝑏𝐴 ⟹ 𝑎𝑏𝑏𝑎𝐵 ⟹ 𝑎𝑏𝑏𝑎

CO PO Mapping

Course Outcomes

M
o

d
u

le
s

co
ve

re
d

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

10

P
O

11

P
O

12

P
SO

1

P
SO

2

P
SO

3

P
SO

4

CO1

Acquire fundamental understanding of
the core concepts in automata theory
and Theory of Computation

1,2,3,4
,5

2 3 - - - 2 - - - - - - - 3 3

CO2

Learn how to translate between
different models of Computation (e.g.,
Deterministic and Non-deterministic
and Software models).

1,2

2 3 2 2 2 2 - - - - - - - 3 3 3

CO3

Design Grammars and Automata
(recognizers) for different language
classes and become knowledgeable
about restricted models of
Computation (Regular, Context Free)
and their relative powers.

2,3

2 3 2 2 2 2 - - - - - - 2 - 3 -

CO4

Develop skills in formal reasoning and
reduction of a problem to a formal
model, with an emphasis on
semantic precision and conciseness.

3,4

2 3 2 2 - 2 - - - - - - 2 2 3 3

CO5
Classify a problem with respect to
different models of Computation

5
2 3 2 2 - 3 - - - - - - 3 3 3 3

COGNITIVE

LEVEL
REVISED BLOOMS TAXONOMY KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)
CORRELATION

LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation

PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of solutions PO9 Individual and team work 2
Moderate/

Medium

PO4
Conduct investigations of

complex problems
PO10 Communication 3

Substantial/

High

PO5 Modern tool usage PO11 Project management and finance

PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

PSO3 Apply software engineering methods to design, develop, test and manage software systems.

PSO4 Develop intelligent applications for business and industry

