
USN

Internal Assessment Test 2 – Dec 2022

Sub: UNIX PROGRAMMING Sub Code: 18CS56 Branch: CSE

Date: 05/12/2022 Duration: 90 mins Max Marks: 50 Sem /
Sec: V SEM / A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT
1 (a) Identify and explain the command used for pattern matching either in a file or in a

given text. Mention different options for the same command.

SOLUTION:
The grep filter searches a file for a particular pattern of characters, and displays all lines
that contain that pattern. The pattern that is searched in the file is referred to as the
regular expression (grep stands for global search for regular expression and print out).
Syntax: grep [options] pattern [files]
Options Description
-c : This prints only a count of the lines that match a pattern
-h : Display the matched lines, but do not display the filenames.
-i : Ignores, case for matching
-l : Displays list of a filenames only.
-n : Display the matched lines and their line numbers.
-v : This prints out all the lines that do not matches the pattern
-e exp : Specifies expression with this option. Can use multiple times.
-f file : Takes patterns from file, one per line.
-E : Treats pattern as an extended regular expression (ERE)
-w : Match whole word
-o : Print only the matched parts of a matching line,
with each such part on a separate output line.

[06] CO2 L2

(b) Predict the output for the following:
1. ls [ijk]*doc 2. [A-Z]????*
3. *.[!s][!h] 4. *[!0-9]

SOLUTION:
1. Lists the filenames that start with i or j or k and end with doc.
2. Gives a pattern that starts with an Alphabet followed by any 4 characters or digits.
3. Displays all the files with any name other than .sh extension.
4. Displays a file that has zero or more occurrences of any character and does not

end with a number.

[04] CO2 L3

2 (a) Describe the use of Case statements with syntax in shell scripts.
SOLUTION:
Shell supports case...esac statement which handles exactly this situation, and it does so
more efficiently than repeated if...elif statements.

[05] CO2 L2

Syntax
The basic syntax of the case...esac statement is to give an expression to evaluate and to
execute several different statements based on the value of the expression.

The interpreter checks each case against the value of the expression until a match is
found. If nothing matches, a default condition will be used.

case word in
pattern1) Statement(s) to be executed if pattern1 matches ;;
pattern2) Statement(s) to be executed if pattern2 matches ;;
pattern3) Statement(s) to be executed if pattern3 matches ;;
*) Default condition to be executed ;;

esac

(b) Write a Menu-driven shell script using case statements to print the following:
1. List of Files 2. Processes of the user
3. Today’s date 4. User of the system
5. Exit

SOLUTION:

echo " ********** Menu **********\n
1. Listing the files
2. Processes of user
3. Today's Date
4. Users of the system
5. Quit"

read choice
case $choice in

1) ls ;;
2) ps -f ;;
3) date ;;
4) who ;;
5) exit ;;
*) echo "Invalid Option" ;;

esac

[05] CO2 L3

3 (a) Explain three standard files supported by UNIX. Also, demonstrate the special files used
for output redirection.
SOLUTION:

[10] CO2 L2

Redirection is a feature in Linux such that when executing a command, you can change
the standard input/output devices. The basic workflow of any Linux command is that it
takes an input and give an output.

The standard input (stdin) device is the keyboard.
The standard output (stdout) device is the screen.
With redirection, the above standard input/output can be changed.
Output Redirection
The ‘>‘ symbol is used for output (STDOUT) redirection.

Example:
ls -al > listings
Here the output of command ls -al is re-directed to file “listings” instead of your screen.
Use the correct file name while redirecting command output to a file. If there is an
existing file with the same name, the redirected command will delete the contents of that
file and then it may be overwritten.” If you do not want a file to be overwritten but want
to add more content to an existing file, then you should use ‘>>‘ operator.

You can redirect standard output, to not just files, but also devices!
$ cat music.mp3 > /dev/audio

The cat command reads the file music.mp3 and sends the output to /dev/audio which is
the audio device. If the sound configurations in your PC are correct, this command will
play the file music.mp3

Input redirection
The ‘<‘ symbol is used for input(STDIN) redirection
Example: The mail program in Linux can help you send emails from the Terminal.

You can type the contents of the email using the standard device keyboard. But if you
want to attach a File to email you can use the input re-direction operator in the following
format.
This would attach the file with the email, and it would be sent to the recipient.

Error Redirection
Whenever you execute a program/command at the terminal, 3 files are always open, viz.,
standard input, standard output, standard error. These files are always present whenever
a program is run. As explained before a file descriptor, is associated with each of these
files.

File File Descriptor

Standard Input STDIN
0

Standard Output STDOUT

1

Standard Error STDERR
2
By default, error stream is displayed on the screen. Error redirection is routing the errors
to a file other than the screen.

Error re-direction is one of the very popular features of Unix/Linux. Frequent UNIX users
will reckon that many commands give you massive amounts of errors. For instance, while
searching for files, one typically gets permission denied errors. These errors usually do
not help the person searching for a particular file. While executing shell scripts, you often
do NOT want error messages cluttering up the normal program output. The solution is to
re-direct the error messages to a file.

$ myprogram 2>errorsfile
Redirection in Linux/Unix - Demystified!
Above we are executing a program names myprogram.

The file descriptor for standard error is 2.

4(a) Demonstrate the usage of conditional statements in shell programming with the help of
syntax and examples.
SOLUTION:
There are total 5 conditional statements which can be used in Shell Programming.
1. if statement
2. if-else statement
3. if..elif..else..fi statement (Else If ladder)
3. if..then..else..if..then..fi..fi..(Nested if)
4. switch statement

Their description with syntax is as follows:

if statement: This block will process if specified condition is true.
Syntax:
if [expression]
then
statement

fi
Example:
if grep "$1" $2
then

echo "Pattern Found"
Fi

[06] CO2 L2

if-else statement : If specified condition is not true in if part then else part will be execute.
Syntax:
if [expression]
then
statement1

else
statement2

fi
Example:
if grep "$1" $2
then

echo "Pattern Found"
else

echo "Pattern Not Found"
Fi

if..elif..else..fi statement (Else If ladder) :To use multiple conditions in one if-else block,
then elif keyword is used in shell. If expression1 is true then it executes statement 1 and
2, and this process continues. If none of the condition is true then it processes else part.
Syntax :
if [expression1]
then
statement1
statement2
.
.

elif [expression2]
then
statement3
statement4
.
.

else
statement5

fi
Nested if: Nested if-else block can be used when, one condition is satisfies then it again
checks another condition. In the syntax, if expression1 is false then it processes else part,
and again expression2 will be check.
Syntax:
if [expression1]
then
statement1
statement2
.

else
if [expression2]
then

statement3
.

fi
fi
switch statement: case statement works as a switch statement if specified value match
with the pattern then it will execute a block of that particular pattern. When a match is
found all of the associated statements until the double semicolon (;;) is executed. A case
will be terminated when the last command is executed. If there is no match, the exit
status of the case is zero.

Syntax:

case in
Pattern 1) Statement 1;;
Pattern n) Statement n;;

esac
Example Programs

Example:
echo " ********** Menu **********\n
1. Listing the files
2. Processes of user
3. Today's Date
4. Users of the system
5. Quit"

read choice
case $choice in

1) ls ;;
2) ps -f ;;
3) date ;;
4) who ;;
5) exit ;;
*) echo "Invalid Option" ;;

esac

(b) Consider the following conditions and write shell code using the test command and its
shortcut for the same.

1. Variable num is equal to 0
2. check whether a given string is Null
3. Variable num1 is greater than num2.
4. Comparing two strings to find whether they are similar or not.

SOLUTION:

1. test “$num” -eq 0 ; [$num -eq 0]
2. test -z “$var” ; [-z "$var"]

[04] CO2 L3

3. test “$num1” -gt “$num2” ; [“$num1 -gt “$num2”]
4. test “$str1” == “$str2” ; [“$var1 == “$var2”]

5 (a) Explain Shell’s Interpretive life cycle.
SOLUTION:

Shell Interpretive Cycle
1. Shell issues the prompt and waits for you (user) to enter a command.
2. After a command is entered, the shell scans command line for meta-characters and
expands abbreviations to recreate simplified commands.
3. It then passes on the command line to kernel for execution.
4. The shell waits for the command to complete and normally can't do anything while
the command is running.
5. After the command gets executed the prompt reappear and the whole cycle is
repeated again.

[04] CO2 L1

(b) Consider the string str = “ This is UNIX Programming Exam”. Predict and depict the
changes in the positional parameters when the following commands are executed
sequentially

1. set $str
2. shift
3. shift

SOLUTION:

set $str: $1 = This; $2 = is; $3 = UNIX; $4 = Programming; $5 = Exam;
shift: $1 = is; $2 = UNIX; $3 = Programming; $4 = Exam
shift: $1 = UNIX; $1 = Programming; $3 = Exam

[06] CO2 L3

6 (a) Explain the looping statements along with the syntax in shell scripts
(i) For (ii) While

SOLUTION:
The Looping Statements in Shell Programming are:

[05] CO2 L2

1. while Loop
2. For Loop

while Loop: Here command is evaluated and based on the result loop will
executed, if command raise to false then loop will be terminated
Syntax :
while condition ;
do
Statement(s)

done

Example:
a=0
while ["$a" -lt 10]
do
echo $a

done
for Loop: The for loop operate on lists of items. It repeats a set of commands for
every item in a list.
Syntax :
for var in 0 5
do
statements
done

Example:
for file in Demo1.sh Demo2.sh Demo3.sh Demo4.sh;
do

cp $file ${file}.bak
echo $file Copied to $file.bak

done

(b) A user wants to create a backup for five files named File1.sh, File2.sh, File3.sh, File4.sh
and File5.sh in the same folder. Write a shell script to perform the above problem.

SOLUTION:
for file in Demo1.sh Demo2.sh Demo3.sh Demo4.sh;
do

cp $file ${file}.bak
echo $file Copied to $file.bak

done

[05] CO2 L3

__

CO POMapping

Course Outcomes

Mod
ules
cover
ed

P
O
1

P
O
2

P
O
3

P
O
4

P
O
5

P
O
6

P
O
7

P
O
8

P
O
9

P
O
1
0

P
O
1
1

P
O
1
2

P
S
O
1

P
S
O
2

P
S
O
3

P
S
O
4

CO1 Explain Unix Architecture, File system
and use of Basic Commands

M1 3 2 3 2 2 - 0 0 0 0 0 0 0 0 0 0

CO2 Illustrate Shell Programming and to
write Shell Scripts

M2 3 2 3 2 2 0 0 0 0 0 0 0 0 0 1 0

CO3 Categorize, compare and make use of
Unix System Calls

M3M4
M5 3 2 3 2 2 0 0 0 0 0 0 0 0 2 0 0

CO4 Build an application/service over a
Unix system.

M1,
M2,
M3,
M4,
M5

3 2 3 2 2 0 0 0 0 0 0 0 0 2 2 0

COGNITIVE
LEVEL REVISED BLOOMS TAXONOMY KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,
when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,
discuss, extend

L3 Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,
change, classify, experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,
infer.

L5 Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,
discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) CORRELATION
LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation
PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of
solutions PO9 Individual and team work 2 Moderate/

Medium

PO4 Conduct investigations of
complex problems PO10 Communication 3 Substantial/

High
PO5 Modern tool usage PO11 Project management and finance
PO6 The Engineer and society PO12 Life-long learning
PSO1 Develop applications using different stacks of web and programming technologies
PSO2 Design and develop secure, parallel, distributed, networked, and digital systems
PSO3 Apply software engineering methods to design, develop, test and manage software systems.
PSO4 Develop intelligent applications for business and industry

