USN \\\% 3
L) CMRIT
Internal Assessment Test 1 —Nov 2022 Solutions
. . Sub Branch | ECE,EEE,
Sub: | Python Application Programming Code: 18CS752 . MECH
Date: | 22.10.2022 Duration: | 90 min’s M;\ﬂ:‘ 50 | SEMSEC | 7 A B, C OBE
Answer any FIVE FULL Questions MKASR co RTB
1(a) What is a program? Explain the building blocks of programs. [05] | CO1 | L2
Solve the problem by analyzing
Coordinate the use of resources (primary/secondary memory/networked
connections /10 Devices)
“Talking to the CPU”
Stored Instructions : Program
« The definition of a program at its most basic is a sequence of Python
statements that have been crafted to do something.
* hello.py script is a program. It is a one-line program and is not particularly
useful, but in the strictest definition, it is a Python program.
The act of writing the instructions and ensuring it is correct : Programming
Input : Get data from the “outside world”.
Output : Display the results of the program on a screen or store them in a file,
speaker,etc.
Sequential Execution : Perform statements one after another in the order they
are encountered in the script.
Conditional Execution - Check for certain conditions and then execute or skip
a sequence of statements.
Repeated Execution - Perform some set of statements repeatedly, usually with
some variation.
Reuse -Write a set of instructions once and give them a name and then reuse
those instructions as needed throughout your program.
(b) Explain the logic and write program using function for finding maximum of 3 [05] = CO1 = L3
numbers.
def max_num(a,b,c):
if a>b:
if a>c:
m=a
else:
m=c
else:
if b>c:
m=b
else:
m=c

return m

2 (a)

(b)

3(a)

m_num = max_num(5,8,9)

print('max number is’, m_num)
print('using inbuilt function’, max(5,8,9))
max_func.py =====

max number is 9

using inbuilt function 9

What is the role of a programmer? List and elaborate on two skills required fora [04] = CO1
programmer.

e Solve the problem by analyzing
Coordinate the use of resources (primary/secondary memory/networked
connections /10 Devices)
“Talking to the CPU”
Stored Instructions : Program
e The act of writing the instructions and ensuring it is correct : Programming
Skills required
Master the language (Python) — the vocabulary and the grammar.
Become familiar with the syntax, the various building blocks of Python, input,
output, sequential execution, repeated execution, reuse.
e Solve the problem — by combining words to form sentences and essentially

craft a story

-use logic to combine the various building blocks for a particular purpose

Write a program print whether a given year is a leap year. [06] = CO1
To be a leap year, the year number must be divisible by four — except for end-of-
century years, which must be divisible by 400. This means that the year 2000 was
a leap year, although 1900 was not. 2020, 2024 and 2028 are all leap years.
if (year%4==0 and year%?2100 !=0) or year%400==0:
print('leap year")

[OR]
year=int(input('Enter year:"))
leap = False
if year%4==0:
if year %100==0:
if year%400 ==0:
leap=True

else:
leap = True

if leap:
print('Leap year’)
else:
print('Not a leap year’)
Output:
Enter year:2000
Leap year
Enter year:1900
Not a leap year

Compare and contrast syntax error, logic error and semantic error with examples. [04] = CO1

L2

L3

L2

Syntax Errors : grammatical mistakes, easy to fix
Eg. if x%2 ==
print(‘number is even’)
In the above code Python expects a : following the if statement. If it is missing,
it shows a syntax error.
Logic Errors : good syntax, but mistake in the order or the relation of statements
to one another
Eg. Check if number is even

Code:

x=5

if xX%2 !'=0:
print(‘Even’)

This is logically wrong.
The correct code is
If x%2 ==0:

Print(‘Even’)
Semantic Errors : syntactically perfect and logically correct, but the program
just does not do what it is meant to do (most difficult to identify and rectify)
Eg. x=1,000,000,000
Print(x)
(1,0,0,0)
If the programmer wanted to split big numbers, then they should have used _
(underscore). In python a commatreats it as a tuple. If the programmer expected
1000000000 to be printed, and did not know that comma cannot be used to split
large numbers, they will not be able to correct this error.

(b) [06] CO1 L3
def is_prime(i):
j=2
isprime=True
while j<=i//2: # for j in range(], i//2+1)
#print(i,'%",j)
if 1%j==0:
isprime=False
break
j+=1 #remove if using for
return isprime

m=2
n=50
while m<=n:
if is_prime(m):
print(m, end=""

m+=1

======= RESTART: D:/ prime.py =======
23571113171923293137414347
4 (a) Differentiate compiler and interpreter. [02]+ = CO1 | L2
« An interpreter reads the source code of the program as written by the [04]
programmer, parses the source code, and interprets the instructions on the
fly. Python is an interpreter and when we are running Python interactively

we can type a line of Python (a sentence) and Python processes it
immediately and is ready for us to type another line of Python.

e A compiler converts the source code in high-level language to low-level
language such as object code that can be used to create an executable
program.

Explain type conversion, math functions using inbuilt functions with code snippets

« When you put an integer and floating point in an expression, the integer is
implicitly converted to a float

« You can control this with the built-in functions int() and float()

>>> print(float(99) / 100)

0.99

>>> | =42

>>> type(i)

<class 'int’>

>>> f = float(i)

>>> print(f)

42.0

>>> type(f)

<class 'float™>

>>> print(1 + 2 * float(3) / 4 - 5)

-2.5

>>>

Math runctions
« math module has to be imported to use this.
» Creates a module object named math
« Module object contains the functions and variables defined in the module
« To access, specify the name of the module and name of the function

separated by a dot.

>>> import math

>>> decibels = 10*math.log10(5/4)

>>> decibels

0.9691001300805642

>>>

>>> radians =0.3

>>> x=math.sin(radians)

>>> X

0.29552020666133955
>>>

(b) Write a python program using Exceptions, so that your program handles non- [04] = COl1

numeric input gracefully by printing an error message “Error, Please enter numeric
input” and exiting the program

Example Ouput:

Enter Hours: 20

Enter Rate: nine

Error, Please enter numeric input

try:
hours = int(input('Enter hours:"))
rate = float(input('Enter rate:"))
except:

L3

print('Please enter number input’)

except_g.py ==
Enter hours:20
Enter rate:nine
Please enter number input

5 (a) Differentiate break and continue statements with the help of flowchart and code. [04] = CO1
» The break statement ends the current loop and jumps to the statement
immediately following the loop
« Itis like a loop test that can happen anywhere in the body of the loop
« The continue statement ends the current iteration and jumps to the top of the

!

loop and starts the next iteration

continue

print('Done’)

while True: while True:
line = input('>") line = raw_input('> ")
if line == 'done": if line[0] =="#":
break continue
print(line) if line =="'done":
print('Done!’) break
print(line)
print('Done!")

(b) Write a python program using the list items to demonstrate counting, summing and [06] | CO1
average of elements using loops. Write appropriate comments and output. Do not
use in-built functions.
items =[2,6,8,9,4,9]

items =[2,6,8,9,4,9]
#demonstrate counting, summing and average of elements using loops

count=0
total =0
average =0

foriin items:
count=count+1 #increment count by 1
total+=i # add each item to total

average = total/count #calculate average

print('Count:’, count)
print(‘Total:', total)
print(‘Average:', average)
demo_loop.py =====

Count: 6

Total: 38

Average: 6.333333333333333

6(a) Evaluate the following expressions:
(i) 3/2%4+3+(10/4)**3-2
3/2*4+3+(10/4)**3-2
= 3/2*4+3+(2.5)**3-2
= 3/2*4+3+15.625-2
=1.5%4+3+15.625-2
=6.0+3+15.625-2
= 9+15.625-2
= 24.625-2 =22.625

@iy -17%3
-17 —math.floor(-17/3) * 3 = -17 — (math.floor(-5.67)*3) = -17 — (-6*3) = -17+18=1
(iii) 8%2 +9//3
0+3=3
(b) Explain concept of conditional alternate execution and chained conditionals using
diagrams and code snippets.
» Sometimes we want to do one thing if a logical expression is true and
something else if the expression is false
» Itis like a fork in the road - we must choose one or the other path but not
both
» Alternatives are called branches

no

=

{

print('Not bigger') i print('Bigger’)

print("All Done")

X=4

ifx>2:
print('Bigger")

else :
print('Smaller")

print('All done’)

Chained Conditionals — when there are multiple branches.

[03]

[07]

Co1

L2

Co1

L2

print('small’)

no
yes
x<10 print('Medium")

no

print('LARGE")

print("All Done")

ifx<2:
print(‘small’)
elifx<10:
print('Medium’)
else :
print(LARGE’)
print('All done’)

