	ITUTE OF INOLOGY		USN											ONE DESTRUCTION OF THE	CMRIT	
		-	Internal A	ssesn	nent [Γest I	– No	ov 202	22							
Sub:	Electrical Machine Design Co				Code	e:	18E	18EE55								
Date:	05/11/2021	Duration:	90 mins	N	⁄Iax N	1arks:		50	8	Sem:	V	Secti	on:	Α &	ъВ	
			Note: A	nswer a	any fiv	e FUL	L Qu	estions								
													Mark	OBE CO	R	RBT
1.	What are the limitations	in the design of	of electric	macl	hines	? Expl	ain.						[10]	CO	1	L1
2.					L1											
3.	i) Define specific magne ii) A 350KW, 500V, 450 core length of 0.32m. magnetic loadings, electr	Orpm, 6pole do The lap wour	e generato nd armatu	or is b are ha									[4+6]] CO2	2	L2
4	Derive output equation of	of DC Machine	e.										[10]	CO	2	L2
5.	What are the modern tree	nds in the desi	gn of elec	tric n	nachi	nes?							[10]	CO	1	L1
6.	List and explain the desi	rable propertie	es of insul	ating	mate	rials.							[10]	CO	1	L1
7.	What are the major cons	iderations for	good desi	gn of	elect	rical r	nach	ine?					[10]	CO	L	L1

CI CCI HOD

1. What are the limitations in the design of electric machines? Explain.

Limitations in Design:

Following considerations impose limitation on design.

1. Saturation:

m/c - use of ferromametic materials.

=> max. allowable flux density to be used is determined by the saturation devel of the ferromesnetic material is used.

2. Temp. rise:

on isolation materials.

to do are les

life of unilation matural - temp.

decides.

-> Profes cooling and Ventillation techniques

L> maintain the temp. at specified

Values. (within safe limits).

3. Ingulation:

mechanical and thermal stresses which are produced in the m/c.

The somedamical strength is important.

> large axial and radical fries are produced when secundary way of the is s/c with primary ON.

=> immlation should here the capability to withstand for large amount of mechanical Stresses. => Type of winlation > decides max. op. temp. of the m/c.

Stress.

>> Gine of immlation > decides not only for vottage &
also for mechanical stress.

Fix ex, Same operating vottage, thricker implation les to be used for large ginged anductors than smeller singe zones.

4. Efficieny:

Lalways to be high to reduced operating cost.

The magnetic and electric loading should be small the magnetic and electric loading should be small this requires larger material (im & andults).

=> capital cost 1, but raining cost V.

5. Mechanical Parks:

Ly Simple and eunomically good.

Is recent technological techniques

unice engures performance, relicioneity and duresoility.

Fro. ex. Righ Greed m/c- turbo alternatio.

stren on bothom of teets should released, the allowage limit.

2. Write a note on insulating material and temperature rise? Classify the insulating materials based on thermal considerations and also give examples for each type.

Temperature rise and Insulating materials

-> Losses in machines occur in many forms

-> losses are occuring because machines are

Power converters (mechanical Electrical)

-> losse wastage in energy occurs in

electric Circuits, magnetic cercuit

in machine parts due to friction.

- -> As the losses occur in active parts in the form of heat, for reliable operation of machine & to protect windings we use insulating materials to isolate them from iron parts
- Thouating materials have a safe temperature beyond which it looses its effectiveness, this temperature rise olepends on looses which in turn depends on output, this determine maximum alloable load:

Tiffe = 72 x 103 exp (-0:090)

so we can conclude that a small rise in the the will adversely effect life of insulating material in turn the machine.

Temp Surface S

Etrous . 22 9 f greylation . o. coin

Now other-than affecting Insplation temperature rise also affects mechanical parts of machine part

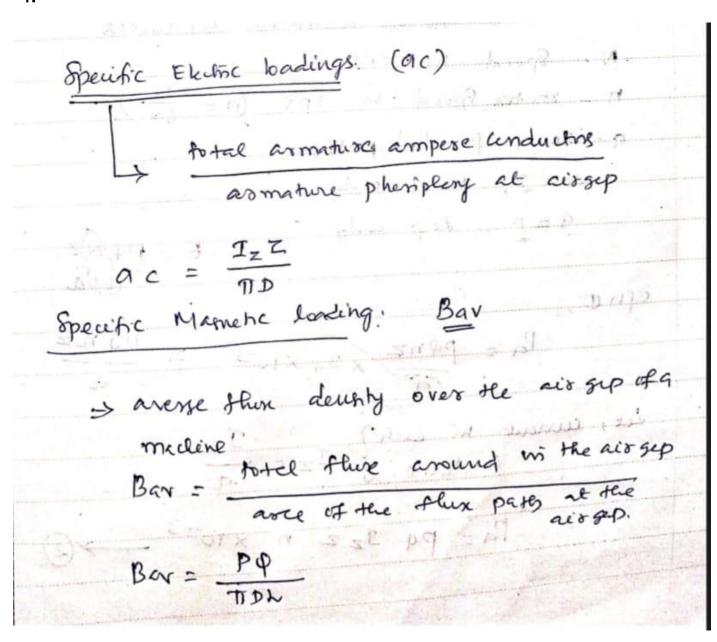
Eg: - soldered soints blu commotator & windings may open up.

So you may conclude that if machine is properly open operated under femperature limits the problem mentioned above is solved, but the problem mentioned above machine olesign. This may lead to expensive machine olesign.

The heat procluced by system clepends on loss but by having proper cooling & ventilation system this can be necluced to an extent.

Recently we can obtain higher output with given weight of material using proper ventilations weight of materials heat resisting properties of insulating materials.

Class	1 Temperature	Frample					
У	90°c	Cotton, Sills, Paper, Cellulose, wood					
A	105 ℃	Class Y materials. with impregnated with no twalrestns, of letc,					
E	120°C	Synthetic resinances, lotton paper laminates with formaldehyde					
B	1 30 ℃	mica, glass; fibre, asbestos laminate					
F	1 55 ℃	Class B with bonding materials Of higher thermal Stabilityini					
H	180 ℃	Glass fibre & asbestos materials materials made of mica, glass fibre et					
C >180 °c		mica . Ceramics, glass . Quartz. without binders / with silicon resins					


Class A hass laminated wood, varnished paper.

Young Arya Eats Break Fast as Horlicks & Chocos

that carlude that

- 3. i) Define specific magnetic and electric loadings.
- ii) A 350KW, 500V, 450rpm, 6pole dc generator is built with an armature diameter 0.87 m and core length of 0.32m. The lap wound armature has 660 conductors. Calculate the specific magnetic loadings, electric loadings and pole pitch.

i.

	P= 350 kW D= 0.87m
में तथ स	V = 500 V
	N=450xpm = 7=660
	Tolod : 5° 0 = 0
	To find or (i) Box = Port by = 9
	as so Bover Pob 85 Ir = 9
1.08 7	TOL 9
95/11/2	Ø= East March
	Profe

LIATE: 1
Ø = 500 × 6
6× 450 × 60
Ø = 0.101 bb
Ø= 0.101 w
and lay se
Bay = 6 × 0.101
π×0.82×0.32
Box = 0.692 wb/m2
C'D ac Carmature Conductore).
and the second of the second o
$\frac{\partial \mathcal{L}}{\partial \mathcal{L}} = \frac{1}{2} \cdot \frac{1}{2} \operatorname{adapter}$
$I_2 = I_a$
2 30 May 12 50 16 COL
P= VI × 10-3 in KN
1891 Til = R & Lord & college 1800
I = 350
500×0002
the day of the Tolland and the
I = Ia (8ince Tp is very small)
I7 = Ia = 100 = 116.66A
Charge loss value of us for high wallage markeres
ac = 116.66 × 660
$\pi(o.84)$
ac = 28170.6 ac/m
. a placed of so B and the dold or red with a so
Results = (i) Box = 0.692 mb/m2
(ii) ac = 281 to 6 ac m
(i) (C = 881+0.0 cm)

4. Derive output equation of DC Machine.

Output Equetion of a Dc Machine: det Pa - Power Hereloped by comature in two. Pa = Generated eng x crimature where x103 Pa = E Ia x 10-3 / -> 0 Q - this per pole in wb. Z - total. no of armature anductors. N- Speed in RPM n - motor speed in sps (n = No)... a - no-of possile) paths. a=2, wave odg a=p, Lap wdg. Pa = Panz x Ia x 10-3 = epno, Let, current ni each } Iz = Iq Pa = pq Izz n x10-3

Magnetic loading, Bar = Electric bondey, ac PP = Bar TIDL IZZ = TD ac Diameter of corrective leupes if the comatuse. Pa = BarTIDL TDAC XNX10 Pa= T2 BavacD2Lnx(10 Pa= Co D2 L n m kw where Co = TT Bar ac × 10-3 output Co-efficient

Windsom (i) Generator: and make the Power developed }
By a hirator & Pa = IIp - lunes Pa = output pois _ losses 2118 101 119 Pa = P - Inses. Fis lane guestose, luses are nestifible 1) Moto: -Pa = olp poues + lunes. Pa= P + luses. box mons: Pa=1Pade

5. What are the modern trends in the design of electric machines?

Modern Trends in Design of Electrical Machines: 5

Design of Machine vivolves both

a "science" and an "are!"

Science: Basic principles and mathematical equations followed.

Axt: Ichowledge of these principles of the visibilient to produce current and economic design.

=> Sometimes machine design mathematical equations are less compared to number of unknowns.

The design of machine involves following steps:

- => choice of consmissional principle
- occling & ventillation hystern
- of mendaring materials

-

- => conducing materials.
- its three design process of machine is majurely divided
 - 1) Electromagnetic design
 - 2) Mechanicel design
 - 3) Thermal design.
- These porblems are interrelated to each other. So they can be solved separately and results can be inter related later.
- Design of each and every system are widependent on each other.

 So ophimingsion is required, there arms the idea of iteration.

Some purpose to

Ly reduce time

Ly get results queckly [less computation time]

Ly reduce manponer in celculations.

6. List and explain the desirable properties of insulating materials.

Electrical Properties of Insulating Materials.

1. High dielectric Strength, at elevated temperatures
2. High resistivity or specific resistance

3. Low dielectric resistanc hysteresis

4. Good thermal Gonductivity

5. High , thermal Stability

Good mechanical properties

Electrical properties mentioned above can varry due to many factors mentioned below * Frequency, type of waveform, rms value of output/input voltage (test piece)

* Temperature and mossture content on test piece

* mechanical pressure on test piece

* Dimensions of test piece.

7. What are the major considerations for good design of electrical machine?

Major considerations for Good Lessissi:

- 2. Dusability Conflict to each other.
- 3. Performance criteria as laid down in specifications.
- => Most of the cases, its difficult to machine perform are the performance irrrespective of Cost and durewility.
- => Impossible to cheep and also at same duresility.
- -> MIC lung life + high quelity materials -> ast 1.
- A performance meet certain, a comproamise blue: Cost and durability can be had.
- => A good design a m/c life b/w 20-30 yrs. and has low initial ast.