

All conditional jumps are short jumps
It must be noted that all conditional jumps are short jumps, meaning that the address of
the target must be within -128 to +127 bytes of the contents of the program counter
(PC). This very important concept is discussed at the end of this section.

CMR

INSTITUTE OF

TECHNOLOGY

USN

 Internal Assessment Test - 2

Sub: Microcontrollers Code: 18EE52

Date: 2/12/2022 Duration: 90 mins Max Marks: 50 Sem: 5th Branch: EEE

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT
1 Explain different jump and call instructions of 8051 microcontroller with their

jump ranges with the help of figure.

Jump explainaton-5 marks

Call explaination -5 marks

10 CO2 L2

2 Write an ALP of 8051 to read the content of Port 0 and send it to Port 1 after

inversion, continuously.

Reading the content -3

Inversion-3

Continuously sending to port1-4

10 CO2 L3

3 Write an assembly language program to toggle the bits of port P1

Alp program-10m

10 CO3 L3

4 Write an ALP & C program to compute 1+2+..........+N (say 15) and save the

sum at 70H

alp- 5 M

C program- 5M

10 CO3 L3

5 Write an assembly language program to exchange the lower nibble of

data present in external memory 6000H and 6001H.

 alp- 8 M

expected o/p- 2 M

10 CO3 L3

6 Explain with suitable example, the various conditional instructions available

in 8051 in detail.

Any five conditional statement with example-2 m each

10 CO2 L4

7 Write an ALP to find the average of ten 8 bit numbers stored in internal RAM

location starting from 30 H to onwards store result at 60 H.

Alp- 8 M

Expected o/p- 2 M

10 CO2 L3

8 Analyze different data types supported by 8051C Microcontroller.

5 data types and its explaination with each example-2 M

10

CO3 L4

Unconditional jump instructions
The unconditional jump is a jump in which control is transferred unconditionally to the
target location. In the 8051 there are two unconditional jumps: LJMP (long jump) and
SJMP (short jump). Each is discussed below.
LJMP (long jump)
LJMP is an unconditional long jump. It is a 3-byte instruction in which the first byte is the
opcode, and the second and third bytes represent the 16-bit address of the target
location. The 2-byte target address allows a jump to any memory location from 0000 to
FFFFH.
Remember that although the program counter in the 8051 is 16-bit, thereby giving a
ROM address space of 64K bytes, not all 8051 family members have that much on-chip
program ROM. The original 8051 had only 4K bytes of on-chip ROM for program space;
consequently, every byte was precious. For this reason there is also an SJMP (short
jump) instruction, which is a 2-byte instruction as opposed to the 3-byte LJMP
instruction. This can save some bytes of memory in many applications where memory
space is in short supply. SJMP is discussed next.
SJMP (short jump)
In this 2-byte instruction, the first byte is the opcode and the second byte is the relative
address of the target location. The relative address range of 00 – FFH
nother control transfer instruction is the CALL instruction, which is used to call a
subroutine. Subroutines are often used to perform tasks that need to be performed
frequently. This makes a program more structured in addition to saving memory space.
In the 8051 there are two instructions for call: LCALL (long call) and ACALL (absolute
call). Deciding which one to use depends on the target address. Each instruction is
explained next.
LCALL (long call)
In this 3-byte instruction, the first byte is the opcode and the second and third bytes are
used for the address of the target subroutine. Therefore, LCALL can be used to call
subroutines located anywhere within the 64K-byte address space of the 8051. To make
sure that after execution of the called subroutine the 8051 knows where to come back
to, the processor automatically saves on the stack the address of the instruction
immediately below the LCALL. When a subroutine is called, control is transferred to that
subroutine, and the processor saves the PC (program counter) on the stack and begins
to fetch instructions from the new location. After finishing execution of the subroutine,
the instruction RET (return) transfers control back to the caller. Every subroutine needs
RET as the last instruction

ACALL (absolute call)
ACALL is a 2-byte instruction in contrast to LCALL, which is 3 bytes. Since ACALL is a 2-byte
instruction, the target address of the subroutine must be within 2K bytes because only 11 bits of
the 2 bytes are used for the address. There is no difference between ACALL and LCALL in
terms of saving the program counter on the stack or the function of the RET instruction. The
only difference is that the target address for LCALL can be anywhere within the 64K-byte
address space of the 8051 while the target address of ACALL must be within a 2K-byte range.
In many variations of the 8051 marketed by different companies, on-chip ROM is as low as IK
byte. In such cases, the use of ACALL instead of LCALL can save a number of bytes of
program ROM space.

2. ORG 00h
MOV A, #0FFH;A=FF hex
MOV P0, A;make P0 an i/p port ;by writing it all 1s
BACK: MOV A, P0 ;get data from P0
CPL A : TAKE COMPLEMENT OF A
MOV P1, A ;send it to port 1
SJMP BACK ;keep doing it
END

3. ORG 00h
MOV A, #0FFH;A=FF hex
MOV P1, A;make P0 an i/p port ;by writing it all 1s
MOV A,#55H
BACK: MOV A, P1 ;get data from P0
CPL A : TAKE COMPLEMENT OF A
MOV P1, A ;send it to port 1
SJMP BACK ;keep doing it
END

4.
ORG 0000h

MOV R0,#30h ; N value

 MOV B,@R0

 INC R0

 MOV A,R0

 MUL AB ; n(n+1)

 MOV B,#02h

 DIV AB ; n(n+1)/2

 MOV 70h,A ; Final result is stored in register R4

end

include <reg51.h>

void main(void)

 {

 Unsigned int i;

 Unsigned char sum;

 for (i = 1; i <= 15; i++)

 {

 sum =(i*(i+2))/2;

 }

 }

6. org 0000h
Mov r2,#01
Mov dptr,#6000h
Movx a,@dptr
Swap a
Movx @dptr,a
Inc dptr
Djnz r2,l1
end

7. org 00h
Mov r1,#0ah
Mov r0,#30h
Mov a,@r0
L1:Inc r0
Add a,@r0
Djnz r1,l1
Mov b,#0ah
Div ab
Mov 60h,a
End

8. explaination
Unsigned char
Signed char
Unsigned int
Signed int
Sbit (single bit)
Bit and sfr

