| CMR
INSTITUTE OF | 18EE53 - POWER ELECTRONICS | | 1 | 24 | |-----------------------------------|--|-------|-----|----------| | INSTITUTE OF TECHNOLOGY | Scheme & Solution | | | CMR | | | Internal Assesment Test - II | | | | | | Answer Any FIVE FULL Questions | | | | | | | Marks | CO | E
RBT | | Explain single phase | se half wave controlled converter with RL load and | [10] | CO4 | L2 | | freewheeling diode, | derive the expression for average and RMS voltage. | | | | | Vs = Vm sin o | IO PROPERTY OF THE | 2 | | | | across the RL l • During the pos | half cycle nsist of a thyristor T, a voltage source Vs, a diode FD load, an inductive load L and a resistive load R. sitive half cycle of the input voltage, the thyristor T is but it does not conduct until a gate signal is applied to | 2 | | | When the thyristor is ON, the input voltage is applied to the load but due to the inductor present in the load, the current through the load builds up slowly. # During the negative half cycle - During the negative half cycle, the thyristor T gets reverse biased. - At this instant i.e at $\omega t = \pi$, the load current shift its path from the thyristor to the freewheeling diode. - When the current is shifted from thyristor to freewheeling diode, the thyristor turns OFF. - The current through the inductor slowly decays to zero through the loop freewheeling diode-R-L. - So here the thyristor will not conduct in the negative half cycle and turns off at $\omega t=\pi$. - So the load receives voltage only during the positive half cycle. - The average value of output voltage can be varied by varying the firing angle α . # **Average Output Voltage** Average Value of Load output Voltage $$= (1/2\pi) \int_{\alpha}^{\pi} VmSin\omega t d(\omega t)$$ $$= (Vm/2\pi) \int_{\alpha}^{\pi} Sin\omega t d(\omega t) = \frac{V_m}{2\pi} \left[-Cos(\omega t) \right]_{\alpha}^{\pi}$$ $$= \left(\frac{Vm}{2\pi} \right) [1 + Cos\alpha]$$ For Single Phase Half Wave Controlled Rectifier: Average Value of Load output Voltage $$Vdc = \left(\frac{Vm}{2\pi}\right)[1 + Cos\alpha]$$ | | | 2 | | | |---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----| | | RMS Value of Output voltage | | | | | | RMS Value of Load output Voltage | | | | | | $=\sqrt{(1/2\pi)\int_0^{2\pi}[VmSin\omega t]^2d(\omega t)}$ | | | | | | $=\sqrt{(Vm/4\pi)\int_{\alpha}^{\pi}[1-Cos2\omega t]d(\omega t)}$ | | | | | | $=\left(\frac{Vm}{2\sqrt{\pi}}\right)\sqrt{(\pi-\alpha)+(1/2)Sin2\alpha} = \left(\frac{Vm}{2}\right)\sqrt{\frac{1}{\pi}\left\{(\pi-\alpha)+(1/2)Sin2\alpha\right\}}$ | | | | | | RMS Value of Load output Voltage $Vrms = \left(\frac{Vm}{2\sqrt{\pi}}\right)\sqrt{(\pi-\alpha)+(1/2)Sin2\alpha}$ | | | | | | | F101 | 00.4 | | | 2 | Explain single phase fully controlled converter with RLE load with neat | [10] | CO4 | L2 | | | diagram and waveform and derive the expression for average and RMS | | | | | | voltage. | | | | | | $ \begin{array}{c} \downarrow \\ \\$ | 2 | | | | | Vs \sqrt{ab} \sqrt{ba} \sqrt{ba} \sqrt{ba} \sqrt{ab} \sqrt{ba} \sqrt{ab} \sqrt{ba} \sqrt{ab} \sqrt{ba} \sqrt{ab} \sqrt{ba} \sqrt{ab} \sqrt{ba} \sqrt{ab} \sqrt | 2 | | | #### **During the positive half-cycle** - The fully controlled bridge converter consists of four thyristors *T1*, *T2*, *T3* and *T4* connected in the form of full wave bridge configuration. - Each thyristor is controlled and turned on by its gating signal and naturally turns off when a reverse voltage appears across it (Line commutation or Natural commutation). - Thyristors T1 and T2 are forward biased (0 to π); - when these two thyristors are turned on simultaneously at $\omega t = \alpha$, the load is connected to the input supply through T1 and T2. - Due to the inductive load, thyristors T1 and T2 continue to conduct beyond $\omega t = \pi$, even though the input voltage is already negative. - T1 and T2 conduct from $\omega t = \alpha$ to $\pi + \alpha$ - The output voltage across the load follows the input voltage vo = vm $\sin \omega t$ ## During the negative half-cycle of the input voltage - Thyristors T3 and T4 are forward biased (π to 2π); - Turning on of thyristors *T*3 and *T*4 applies the supply voltage across thyristors *T*1 and *T*2 as reverse blocking voltage. - T3 & T4 are triggered at $\omega t = \pi + \alpha$ - T1 and T2 are turned off due to line or natural commutation. - The output voltage across the load follows the input voltage vo = - vm $\sin \omega t$ - Load current is transferred from T1 and T2 toT3 and T4. - T3 and T4 conduct from $\omega t = \pi + \alpha$ to $2\pi + \alpha$ - During next half cycle T3 and T4 are turned off #### During Period from α to π - Rectification mode - The input voltage vs and input current is are positive, - Power flows from the supply to the load. - The converter is said to be operated in *rectification* mode. #### During Period from π to $\pi + \alpha$ - *Inversion* mode - The input voltage vs is negative and the input current is is positive, - Reverse power flows from the load to the supply. | | • The converter is said to be operated in inversion mode. | | | | |---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----| | | • This converter is extensively used in industrial applications up to 15 | | | | | | kW. | | | | | | • Depending on the value of α , the average output voltage could be either | | | | | | positive or negative and it provides two-quadrant operation. | | | | | | Average Output Voltage Vdc | | | | | | $V_{O(dc)} = V_{dc} = \frac{2}{2\pi} \left[\int_{\alpha}^{\pi+\alpha} V_m \sin \omega t. d(\omega t) \right]$ | 2 | | | | | $V_{O(dc)} = V_{dc} = \frac{1}{\pi} \left[\int_{\alpha}^{\pi+\alpha} V_m \sin \omega t. d(\omega t) \right]$ $V_{O(dc)} = V_{dc} = \frac{V_m}{\pi} \left[-\cos(\pi + \alpha) + \cos\alpha \right]$ $\cos(\pi + \alpha) = -\cos\alpha$ | | | | | | $V_{O(dc)} = V_{dc} = \frac{V_m}{\pi} \left[\int_{\alpha}^{\pi + \alpha} \sin \omega t. d(\omega t) \right]$ Therefore $V_{O(dc)} = V_{dc} = \frac{2V_m}{\pi} \cos \alpha$ | | | | | | $V_{O(dc)} = V_{dc} = \frac{V_m}{\pi} \left[-\cos \omega t \right]_{\alpha}^{\pi + \alpha}$ | | | | | | RMS Output Voltage Vrms | 2 | | | | | The rms value of the output voltage is given by | | | | | | $V_{\rm rms} = \left[\frac{2}{2\pi} \int_{\alpha}^{\pi+\alpha} V_m^2 \sin^2 \omega t d(\omega t)\right]^{1/2}$ | | | | | | $= \left[\frac{V_m^2}{2\pi} \int_{\alpha}^{\pi+\alpha} (1 - \cos 2\omega t) \ d(\omega t)\right]^{1/2}$ | | | | | | $=\frac{V_m}{\sqrt{2}}=V_s$ | | | | | | With a purely resistive load, thyristors T_1 and T_2 can conduct from α to π , and thyristors T_3 and T_4 can conduct from $\alpha + \pi$ to 2π . | | | | | 3 | Illustrate the single phase dual converter with neat diagram and waveform | [10] | CO4 | L2 | | | and also explain the significance of circulating current in dual converter. | | | | | | • Dual converter- the name itself indicates that it has two converters in | | | | | | it. | | | | | | The dual converter system will provide four quadrant operation | | | | | | | | | | - Normally used in high power industrial variable speed drives. - In the case of a single phase full converter with inductive loads, the converter can operate in two different quadrants in the *Vdc* versus *Idc* operating diagram. - If two single phase full converters are connected in parallel and in opposite direction (connected in back to back) across a common load four quadrant operation is possible. Such a converter is called as a dual converter. • Two single phase full converters are connected in parallel and in opposite direction (connected in back to back) across a common load #### **Converter 1** - The converter number 1 provides a positive dc output voltage and a positive dc load current, when operated in the rectification mode. - The converter number 1 provides a negative dc output voltage and a positive dc load current, when operated in the inverter mode. ## **Converter 2** - The converter number 2 provides a negative dc output voltage and a negative dc load current when operated in the rectification mode. - The converter number 2 provides a positive dc output voltage and a negative dc load current when operated in the inverter mode. - We can have bi- directional load current and bi-directional dc output voltage. 2 | • In this mode of operation both the converters 1 and 2 are switched on | | | | |----------------------------------------------------------------------------------------|-----|-----|---| | and operated simultaneously and both the converters are in a state | | | | | of conduction. | | | | | • If converter 1 is operated as a controlled rectifier by adjusting the | | | | | trigger angle α_1 between 0 to 90° (0< α_1 < 90°) | | | | | The second converter 2 is operated as a line commutated inverter by | | | | | increasing its trigger angle α ₂ above 90 (90°<α ₂ <180°). | | | | | • The trigger angles α_1 and α_2 are adjusted such that they produce the | | | | | same average dc output voltage across the load terminals. | | | | | • Instantaneous output voltages of two converters are out of phase, this | | | | | voltage difference causes circulating current between two converters. | | | | | This cannot flow through the load, and it is limited by limiting reactor. | | | | | • In the circulating current mode a current builds up between the two | | | | | converters even when the load current falls to zero. | | | | | • In order to limit the circulating current flowing between the two | | | | | converters, we have to include current limiting reactors in series | | | | | between the output terminals of the two converters. | 2 | | | | Significance of circulating current | | | | | We can have faster reversal of load current as the two converters are in | | | | | a state of conduction simultaneously. | | | | | This greatly improves the dynamic response of the output giving a | | | | | faster dynamic response. | | | | | The output voltage and the load current can be linearly varied by | | | | | adjusting the trigger angles α_1 and α_2 to obtain a smooth and linear | | | | | output control. | | | | | The control circuit becomes relatively simple. | | | | | Output response is very fast. | | | | | • The load current is free to flow in either direction at any time. | | | | | The reversal of the load current can be done in a faster and smoother way. | | | | | A single phase fully controlled bridge converter is connected with RLE load | [5] | CO4 | I | | where $R = 4\Omega$, $L = 4mH$ and $E = 60V$. The converter is fed from 220V,50Hz | | | | | ac supply. Calculate the average value of load current when the firing angle is 60° . $ \frac{V_0}{\text{arg}} = \frac{2 \text{ Vm}}{77} \qquad \cos \delta \delta = \frac{\sqrt{2}}{2} = 2 \times \sqrt{2} \times 220 \qquad \cos \delta = \frac{\sqrt{2}}{2} \frac{2}}{2} = \frac{\sqrt{2}}{2} 2$ | | | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----| | A single phase circulating current Dual converter is fed by a single phase 120V, 50Hz supply. The load is resistive. The peak current of converter 1 is 35 A. The firing angles are 30° and 150° respectively. If peak circulating current is 13A, Find (i) Inductance of current limiting reactor (ii) Load Resistance. 4) Circulating Current mode dual converter: \[V_s = 120V V_m = \forall 2 \times 120 = 169.71V \] \[\forall = 50 \text{Hz} \text{R load}. \] \[\text{V} = \forall \text{X} \forall 1 \text{R load}. \] \[\text{V} = \forall \text{X} \forall 2 \text{X} \forall 4 \text{K} \forall 50 = \forall 2 \text{L1D rad} \forall \text{Eq.}. \] \[\text{Peak Current of converter } \forall = \forall 50^\circ \text{.} \] \[\text{V} = \forall 2 \text{V} \forall 2 \text{L2D} \forall 2 \text{L3D} \text{.} \] \[\text{Peak Current of Current Trmax} = \forall 3 \text{R} \text{.} \] | [5] | CO4 | L3 | | | 5 | | | | | (i) Industance of Current limiting Readon Lr. | | | | |---|------------------------------------------------------------------------------------------|------|-----|----| | | | | | | | | Inman = 2 Vm (1-cosx1) - 2x 169.7 (1-cos 30) | | | | | | $13 = 339.4 \times 0.134$ | | | | | | | 5 | | | | | | | | | | | $Lr = \frac{339.4 \times 0.134}{314.16 \times 13} = 0.01113H$ | | | | | | | | | | | | Lr = 11.13 mH | | | | | | (ji) Load Resistance R. (5 marcs) | | | | | | Peak current of Converter 1 = Irman + IP | | | | | | 7 35 = 13 + Ip | | | | | | Tr = 35-18 = 22 A. | | | | | | $Tp = \frac{V_m}{R} \Rightarrow R = \frac{V_m}{Tp} = \frac{169.7}{22} = 7.71 \text{ N}.$ | | | | | | R= 7.710 | | | | | | R = 7.71 W | | | | | 5 | a. Explain the working of single phase full wave AC voltage controller with | [10] | CO4 | L2 | | | RL load. Derive the expression for rms value of output voltage. | | | | | | b. List the applications of AC voltage controller. | | | | | | | 1 | | | | | | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fig: Single phase full wave ac voltage controller with RL load # Input Supply Voltage and Thyristor Current Waveform **Output Voltage and Current Waveform** Fig.: Waveforms of Input supply voltage, Load Current, Load Voltage and Thyristor Voltage across T, ## **During Positive Half Cycle \omega t = 0 to \pi** - The thyristor T1 is forward biased during the positive half cycle of input ac supply. - It can be triggered and made to conduct by applying a suitable gate trigger pulse 'α'. only during the positive half cycle of input supply. - When T1 is triggered it conducts and the load current flows through the thyristor T1, the load and through the transformer secondary winding. - By assuming T1 as an ideal thyristor switch it can be considered as a closed switch when it is ON during the period ωt = α to π radians. Output Voltage Vo = Vs - Due to the inductance in the load, the load current $i\theta$ flowing through T1 would not fall to zero at $\omega t = \pi$, when the input supply voltage starts to become negative. - The thyristor T1 will continue to conduct the load current until all the inductive energy stored in the load inductor L is completely utilized and the load current through T1 falls to zero at ωt = β. - β is referred to as the Extinction angle, (the value of ωt) at which the load current falls to zero. ## Conduction Period of T1 $\omega t = \alpha to \beta$ - β is referred to as the Extinction angle, (the value of ω t) at which the load current falls to zero. - The thyristor T1 conducts from $\omega t = \alpha to \beta$. - The conduction angle of T1 is $\delta = (\beta \alpha)$, which depends on the delay angle α and the load impedance angle ϕ . - Thyristor *T*1 turns off naturally at $\omega t = \beta$. - Hence load current flows from at $\omega t = \alpha to \beta$. - β is the extinction angle which depends upon the load inductance value. ### **During Negative Half Cycle** $\omega t = \pi$ to 2π - Between the time period to $\omega t = \pi$ to 2π , - The thyristor *T*2 is forward biased during the negative cycle of input supply - Thyristor T2 is triggered at a delay angle $(\pi + \alpha)$ - The output voltage follows the negative half cycle of input from $\omega t = \pi + \alpha$ to 2π . - When T2 is ON, the load current flows in the reverse direction (upward direction) through T2 during $\omega t = \pi + \alpha$ to $2\pi + \beta$, because of inductive load - The time interval (spacing) between the gate trigger pulses of T1 and T2 is kept at π radians or 180 degrees. - Thyristor T2 turns off naturally at $\omega t = 2\pi + \beta$. - Hence load current flows from $\omega t = \pi + \alpha$ to $2\pi + \beta$, due to conduction of T2 EXPRESSION FOR RMS OUTPUT VOLTAGE VO(RMS) | | <u></u> | | | | |---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----| | | $V_{O(RMS)} = \left[\frac{1}{\pi} \int_{\alpha}^{\beta} V_m^2 \sin^2 \omega t. d(\omega t)\right]^{\frac{1}{2}}$ | | | | | | Output $v_o = V_m \sin \omega t$, for $\omega t = \alpha$ to β , when T_1 is ON. | | | | | | $V_{O(RMS)} = \left[\frac{V_m^2}{\pi} \int_{\alpha}^{\beta} \frac{\left(1 - \cos 2\omega t\right)}{2} d\left(\omega t\right) \right]^{\frac{1}{2}}$ | | | | | | $V_{O(RMS)} = \left[\frac{V_m^2}{2\pi} \left\{ \int_{\alpha}^{\beta} d(\omega t) - \int_{\alpha}^{\beta} \cos 2\omega t. d(\omega t) \right\} \right]^{\frac{1}{2}}$ | 2 | | | | | $V_{O(RMS)} = \left[\frac{V_m^2}{2\pi} \left\{ (\omega t) \middle/ \frac{\beta}{\alpha} - \left(\frac{\sin 2\omega t}{2} \right) \middle/ \frac{\beta}{\alpha} \right\} \right]^{\frac{1}{2}}$ | | | | | | $V_{O(RMS)} = \left[\frac{V_m^2}{2\pi} \left\{ (\beta - \alpha) - \frac{\sin 2\beta}{2} + \frac{\sin 2\alpha}{2} \right\} \right]^{\frac{1}{2}}$ | | | | | | $V_{O(RMS)} = V_m \left[\frac{1}{2\pi} \left\{ (\beta - \alpha) + \frac{\sin 2\alpha}{2} - \frac{\sin 2\beta}{2} \right\} \right]^{\frac{1}{2}}$ | | | | | | $V_{O(RMS)} = \frac{V_m}{\sqrt{2}} \left[\frac{1}{\pi} \left\{ (\beta - \alpha) + \frac{\sin 2\alpha}{2} - \frac{\sin 2\beta}{2} \right\} \right]^{\frac{1}{2}}$ | | | | | | b. Applications of AC voltage controller. | | | | | | Lighting / Illumination control in ac power circuits. | | | | | | Induction heating. | | | | | | Industrial heating & Domestic heating. | | | | | | Transformer tap changing (on load transformer tap changing). | | | | | | Speed control of induction motors (single phase and poly phase ac | | | | | | induction motor control). | | | | | | | | | | | 6 | A single phase full wave AC voltage controller has a resistive load of $R=10\Omega$ | [10] | CO4 | L3 | | | and the input voltage is Vs= 200 V (rms), 50 Hz. The delay angle of thyristor | | | | | | T1 and T2 are equal $\alpha_1 = \alpha_2 = \pi/2$. Determine (i) RMS output voltage V_0 (ii) | | | | | | The input Power Factor P.F. (iii) The average thyristor current I _A (iv) The | | | | | | rms value of thyristor current (v) Output power | | | | | | 1 | <u> </u> | i | | Given Data $R = 1002. V_{S} = 200 \text{ V (YMS)}, f = 504z, Q_{1} = 0.2 = 0.72$ (i) RMS Output Voltage Vo $V_{S} = V_{S} = V_{S} = V_{S} = 0.2$ $V_{S} = V_{S} = V_{S} = 0.2$ $V_{S} = V_{S} = 0.2$ $V_{S} = V_{S} = 0.2$ $V_{S} (iii) A vergge Thyrida Curont. (2 marles) $\int T \operatorname{ang} = \frac{Vm}{2\pi R} \left(1 + \cos \alpha \right) \quad V_m = \sqrt{2} V_s$ $= \sqrt{2} \times 200 \quad \left(1 + \cos 90 \right)$ $\boxed{7} \operatorname{ang} = 4.5 \text{ A}$ | | A | | | | |---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|----| | | (iv) Rms Thyristas curent. (2 mars) | | | | | | $T + RMS = \frac{\sqrt{s}}{\sqrt{2}R} \sqrt{\frac{1}{\pi}(\pi - \alpha) + \frac{sm^2 \alpha}{2}}$ | | | | | | $= \frac{\sqrt{s}}{\sqrt{2}R} \sqrt{\frac{1}{k}(R-\frac{\pi}{2})} + 0$ $= \frac{\sqrt{s}}{\sqrt{2}R} \sqrt{\frac{1}{2}} = \frac{\sqrt{s}}{2\pi R} = \frac{200}{2\times 10}$ $= \frac{\sqrt{s}}{\sqrt{2}R} \sqrt{\frac{1}{2}} = \frac{\sqrt{s}}{2\pi R} = \frac{200}{2\times 10}$ $= \frac{\sqrt{s}}{\sqrt{2}R} \sqrt{\frac{1}{2}} + 0$ $= \frac{2\pi R}{2\times 10}$ $= \frac{2\times 10}{2\times 2\times$ | | | | | 7 | Explain the three phase dual converter with neat diagram and waveform. | [10] | CO4 | L2 | | | • Three phase dual converter gives much higher dc output voltage and higher dc output power than a single phase dual converter system. | 2 | | | expensive and the design of control circuit is more complex. # Output Voltage Waveform During the interval $\left(\frac{\pi}{6} + \alpha_1\right)$ to $\left(\frac{\pi}{2} + \alpha_1\right)$ line to line voltage v_{ab} appears across the output of converter 1 v_{bc} appears across the output of converter 2 5 3 # Four Quadrant Operation Fig.: Four quadrant operation of a dual converter Average Output Voltage $$V_{dc} = \frac{3\sqrt{3}V_m}{\pi}\cos\alpha = \frac{3V_{mL}}{\pi}\cos\alpha$$ Condition for α_1 and α_2 $$\alpha_1 + \alpha_2 = \pi$$ There are two modes of operations possible for a dual converter system. - 1. Circulating current mode of operation. - 2. Non circulating current mode of operation (circulating current free mode of operation). #### Converter 1 - When the converter 1 is switched on and the gate trigger signals are released to the gates of thyristors in converter 1, we get an average output voltage across the load, which can be varied by adjusting the trigger angle α_1 of the converter 1. - If $0 < \alpha_1 < 90^\circ$, the converter 1 operates as a controlled rectifier and converts the input ac power into dc output power to feed the load. - *Vdc* and *Idc* are both positive and the operation occurs in the first quadrant. - The average output power $Pdc = Vdc \times Idc$ is positive. - The power flows from the input ac supply to the load. - When 90°<α1<180° converter 1 operates as a line commutated inverter and Vdc becomes negative, while Idc is positive and the output power Pdc becomes negative. This operation occurs in the fourth quadrant - The power is fed back from the load circuit to the input ac source through the converter 1. Converter 1 operates as a Inverter. - The load current falls to zero when the load energy is utilized completely. #### **Converter 2** - When the converter 2 is switched on and the gate trigger signals are released to the gates of thyristors in converter 2, we get an average output voltage across the load, which can be varied by adjusting the trigger angle α_2 of the converter 2. - If $0<\alpha_2<90^\circ$, the converter 2 operates as a controlled rectifier and converts the input ac power into dc output power to feed the load. - *Vdc* and *Idc* are both negative and the operation occurs in the third quadrant. load current flows in the reverse direction. - The average output power $Pdc = -Vdc \times -Idc$ is positive. - The power flows from the input ac supply to the load. - When 90°<α2<180° converter 2 operates as a line commutated inverter and Vdc becomes positive, while Idc is negative and the output power Pdc becomes negative. This operation occurs in the second quadrant - The power is fed back from the load circuit to the input ac source through the converter 2. Converter 2 operates as a line commutated Inverter. - The load current falls to zero when the load energy is utilized completely. # **Applications of Dual converter** - Direction and <u>speed control of DC motors</u>. - Applicable wherever the reversible DC is required. - Industrial variable speed DC drives upto 2000KW.