CMR INSTITUTE OF TECHNOLOGY

Internal Assessment Test - II

Sub: SIGNALS AND SYSTEMS Code								e:	18EE54		
Date:	3/12/22	Duration:	90 mins	Max Marks:	50	Sem:	5th	Brar	nch:	EEE	
Answer Any FIVE FULL Questions											
								Mark	S CO	BE RBT	
1	Compute the convolution sum of the 2 sequences, $x_1[n]$ and $x_2[n]$, given below									CO2	L3
$x_1[n] = (3,2,1,2)$, $x_2[n] = (1,2,1,2)$. Also verify the results with tabular method.											
2									10	CO2	L3
	(i)h(t)= $t^2u(t)$ ii)h(n)= $(\frac{1}{2})^n u(n)$										
	Find the natural response, forced response and complete response of the given differential equation. $\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = \frac{dx(t)}{dt} + 2x(t)$ with $y(0) = 2$, $\frac{dy(t)}{dt} _{t=0} = 3$ and $x(t) = e^{-t}u(t)$								10	CO2	L3

P.T.O

CMR	USN						CMBI
INSTITUTE OF						I	* CARE INSTITUTE OF TECHNOLOGY, BINGALU ACCREDITED WITH A+ GRADE EY NAM

TECHNOLOGY Internal Assessment Test - I

Sub: SIGNALS AND SYSTEMS Code									e: 18EE		54
Date:	3/12/22	Duration:	90 mins	Max Marks:	50	Sem:	5th	Brar	nch:	EEE	
	Answer Any FIVE FULL Questions										
							Marks	OBE			
								1,10,1110	CO	RBT	
1 (Compute the convolu	tion sum of the	2 sequence	ces, $x_1[n]$ and x_2	₂ [n], giv	en belov	V		10	CO2	L3
	$x_1[n] = (3,2,1,2)$, $x_2[n] = (1,2,1,2)$. Also verify the results with tabular method.										
2	Find the step response of an LTI system, if the impulse response are								10	CO2	L3
	$(i)h(t)=t^2u(t)$	ii)h(n)=	$\left(\frac{1}{2}\right)^n u(n)$								
	The state of the s								10	CO2	L3
equation. $\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = \frac{dx(t)}{dt} + 2x(t)$ with $y(0) = 2$, $\frac{dy(t)}{dt} _{t=0} = 3$ and $x(t) = e^{-t}u(t)$								t)			

4	Obtain direct form-1 and direct form 2 representations for the following $\frac{d^2y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2 y(t) = \frac{d^2x(t)}{dt^2} + \frac{dx(t)}{dt}$	10	CO2	L3
5	Explain the following properties of impulse response (a)Distributive and causal (b)Associative	10	CO2	L2
6	If $h(t) = u(t) - u(t-2)$ and $x(t) = u(t) - u(t-3)$, Determine the output $y(t)$ given $h(t)$ is the impulse response and $x(t)$ is the input for the LTI system.	10	CO2	L3

CI CCI HOD

4	Obtain direct form-1 and direct form 2 representations for the following $\frac{d^2y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2 y(t) = \frac{d^2x(t)}{dt^2} + \frac{dx(t)}{dt}$	10	CO2	L3
5	Explain the following properties of impulse response (a)Distributive and causal (b)Associative	10	CO2	L2
6	If $h(t) = u(t) - u(t-2)$ and $x(t) = u(t) - u(t-3)$, Determine the output $y(t)$ given $h(t)$ is the impulse response and $x(t)$ is the input for the LTI system.	10	CO2	L3

CI CCI HOD

```
1.
            x_1(n) = (3, 2, 1, 2)
                                                                           ((n) + (1) x x = (4) x = 1
                                                         1, 2) 11 16 d + (1) 18 t + [1] B

1 (1) 1 = 2 (4) 18 d + [1]
                                                              1115 - EN
          1 -> 0 to 3
                                                                oldott it moteral
          x -70 to 3
           8[n]= = = x[n] h[n-K]
                    K limit is some as The months and
             りんり= またいかしの」+ xしりからいしり+xしからいっとりからいり
                                  ([6-6] + (2-1) + (2-1) + (1) + (1) + (1) + (1) + (1)
         [ 4[0] = x[0] H[0] + x[0] H[-1) + x[0] H[-2] + x[0] H[-2]
                                  +2[5] h[-5] +>[6] +[-6]
                            = 3x1 + 3x0+3x0+3x0 + 3x0+3x0
           86) = 3
                                                                                        Color ( Color) = (*18
           4[i] = x[i] h[i] + x[x] h[a] + x[x] h[b] + x[x] h[-2] + x[x] h[-3]
                                  +x[1]h[-4] + x[1]h[-5]
                                                                                                                              3/dust. (13
                       = 2 × 2 + 3 × 1 + 00 ((00) = ((1) x) \ ( = 0) &
          SED = 8 me believe not sollate in motion all
     8[3) = x[3] h[2] + x[3] h[2] + x[3] h[1] + x[3]h[0] + x[2]h[0]
                              4x(3)h(-6) +x(3)h(-3)
    8(3) = 12
    8[4] = x[4]$[9] + x[4] h[3] + x[4] h[2] + x[4]h[1] + x[4]h[0]
     P = [4]8
    + 2×1 + 1+2
     8 (5) = 4
   8[6] = x[6] H[6] + x[6] H[2] + x[6] h[4] + x[6] h[3] + x[6] h[
                          2(6) h(1) + x(6) h(0)
                  = 0 + 0+ 142 + 2
                                                                                                                     8[6] = 4
           X(内)1
                                                                                                                              4
            867 = { 3, 8, 8, 12, 9, 4, 4}
```

$$h(t) = t u(t)$$

We know that the step response is given by,

$$s(t) = \int_{-\infty}^{t} h(\tau) d\tau$$

$$= \int_{0}^{t} \tau d\tau$$

$$= \frac{\tau^{3}}{2} \begin{vmatrix} t \\ t \end{vmatrix}$$

The step response $s(t) = \frac{t^3}{2}u(t)$

$$s(n) = \sum_{k=-\infty}^{n} h(k)$$

For n < 0 : s(n) = 0

For
$$n \ge 0$$
 ... $s(n) = \sum_{k=0}^{n} (1/2)^k$

$$s(n) = \frac{1 - (\frac{1}{2})^{n+1}}{1 - \frac{1}{2}}$$

$$= 2[1 - (\frac{1}{2})^{n+1}] \quad : n \ge 0$$

$$\therefore s(n) = 2[1 - (\frac{1}{2})^{n+1}] u(n)$$

$$y(0) = 0 \qquad \frac{dy(t)}{dt} = 0$$

$$0 = C_3 + C_4 + 1$$

$$\frac{dy(t)}{dt} = -4C_3 = 4t - 2C_4 = 4t - e^{-2t}$$

$$0 = -4C_3 - 2C_4 - 1$$

$$C_3 + C_4 = -1$$

$$-4C_3 - 2C_4 = 1$$

$$C_3 = 1/2 \qquad C_4 = -3/2$$

$$y(1) = y'(1) + y'(1)$$

$$= -\frac{1}{2}e^{-4t} + \frac{1}{2}e^{-3t} + e^{-3t}$$

$$y(1) = y'(1) + y'(1)$$

$$= -\frac{1}{2}e^{-4t} + \frac{1}{2}e^{-3t} + e^{-3t}$$

$$y(1) = -3e^{-4t} + 2e^{-3t} + e^{-3t}$$

$$y(2) = -3e^{-4t} + 2e^{-3t} + e^{-3t}$$

4.

(4)
$$\frac{d^2yd}{dt} + \frac{3dy(t)}{dt} + \frac{2y(t)}{dt} = \frac{d^2xt}{dt} + \frac{d^2xt}{dt}$$
 $y(t) + 3\int y(t)dt + \frac{d^2y(t)}{dt} = x(t) + \int x(t)dt$
 $y(t) = -3\int y(t)dt - 2\int y(t)dt + x(t) + \int x(t)dt$

Dout from -I

 $x(t)$
 $y(t)$

Another basic property of convolution is 'distributive property'.

i.e. In discrete-time

$$x(n) * \{h_1(n) + h_2(n)\} = x(n) * h_1(n) + x(n) * h_2(n)$$

and in continuous-time,

$$x(t) * \{h_1(t) + h_2(t)\} = x(t) * h_1(t) + x(t) * h_2(t)$$

Consider an interconnection of discrete-time LTI system as shown in Fig. 2.8

2.3.3 The Associative Property

This is another important property of convolution i.e. in discrete-time, $x(n) * \{h_1(n) * h_2(n)\} = \{x(n) * h_1(n)\} * h_2(n)$

$$x(t) * \{h_1(t) * h_2(t)\} = \{x(t) * h_1(t)\} * h_2(t)$$

Time Domain Representations for LTI Systems

Consider a cascade connection of continuous-time LTI system as shown in Fig. 2.12

$$x(t) \longrightarrow h_1(t) \xrightarrow{z(t)} h_2(t) \longrightarrow y(t)$$
Fig. 2.12

From Fig. 2.12, we have,

$$y(t) = z(t) \cdot h_2(t)$$

$$= \int_{-\infty}^{\infty} z(\tau) h_2(t-\tau) d\tau \qquad (2.16)$$

where z(t) is the output of the first system

.. We have,

$$z(\tau) = x(t) * h_1(\tau)$$

$$= \int_{-\infty}^{\infty} x(\eta) h_1(\tau - \eta) d\eta \qquad (2.17)$$

Substituting eqn. 2.17 in 2.16, we get,

$$y(t) \, = \int \limits_{-\infty}^{\infty} \int \limits_{-\infty}^{\infty} x(\eta) \; h_1(\tau \! - \! \eta) \; h_2(t \! - \! \dot{\tau}) \; d\eta \; d\tau$$

Substituting m=t-n and interchanging the order of integration, we get,

$$= \int_{-\infty}^{\infty} x(\eta) \left[\int_{-\infty}^{\infty} h_1(m) h_2(\underline{t-\eta}-m) dm \right] d\eta$$
$$= \int_{-\infty}^{\infty} x(\eta) \left[h(\underline{t-\eta}) \right] d\eta$$

where
$$h(t-\eta) = h_1(t-\eta) * h_2(t-\eta)$$

 $\therefore h(t) = h_1(t) * h_2(t)$

$$y(t) = x(t) * h(t)$$

$$(2.18)$$

$$y(t) = x(t) * [h_1(t) * h_2(t)]$$
 (2.19)

Observing eqn. 2.18 and 2.19, we can write the system shown in Fig. 2.12 as shown in Fig. 2.13 below.

$$x(t) \longrightarrow h_1(t) * h_2(t) \longrightarrow y(t)$$

Hence the impulse response of two LTI system connected in cascade is the convolution of the individual impulse responses.

Also we know that convolution is commutative. Therefore we can write the system in Fig. 2.13 as below.

$$x(t) \longrightarrow h_2(t) * h_1(t) \longrightarrow y(t)$$
Fig. 2.14
$$x(t) \longrightarrow h_2(t) \longrightarrow h_1(t) \longrightarrow y(t)$$
Fig. 2.15

From the above discussion we conclude that the output of a cascade combination of LTI systems is independent of the order in which the systems are connected.

Similarly, for discrete-time we have,

$$x(n) * \{h_1(n) * h_2(n)\} = x(n) * \{h_2(n) * h_1(n)\}$$

2.3.5 Causal System

We know that the output of a causal system depends only on the present and/or past values of the input to the system. i.e. for a discrete-time LTI system to be causal, its h(n) = 0 for n < 0. Similarly, for a continuous-time LTI system to be causal, its h(t) = 0for t<0.

6.

Here
$$x(\tau) = u(\tau) - u(\tau - 3)$$

$$= \begin{cases} 1 & \text{for } 0 \le \tau \le 3 \\ 0 & \text{elsewhere} \end{cases}$$
and $h(\tau) = u(\tau) - u(\tau - 2)$

$$= \begin{cases} 1 & \text{for } 0 \le \tau \le 2 \\ 0 & \text{elsewhere} \end{cases}$$

Fig. 2.2.34 shows $x(\tau)$ and $h(\tau)$. It also shows $h(t-\tau)$ for various values of t. Output is given as $y(t) = \int x(\tau) \cdot h(t-\tau) d\tau$. The overlap of $x(\tau)$ and $h(t-\tau)$ is shown for various values of t.

Case-I: $t \le 0$ and $t \ge 5$

For this case there is no overlap between $x(\tau)$ and $h(t-\tau)$. Hence y(t) = 0.

Case-II: $0 \le t \le 2$ Refer Fig. (d)

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau = \int_{0}^{t} 1 d\tau = t$$

Case-III: $2 \le t \le 3$ Refer Fig. (e)

$$y(t) = \int_{t-2}^{t} 1 d\tau = 2$$

Case-IV: $3 \le t \le 5$ Refer Fig. (f)

$$y(t) = \int_{t-2}^{3} 1 d\tau = 5 - t$$

Thus the result will be,

$$y(t) = \begin{cases} t & \text{for } 0 \le t \le 2 \\ 2 & \text{for } 2 \le t \le 3 \\ 5 - t & \text{for } 3 \le t \le 5 \end{cases}$$