

BANGALIME: 3 hrs

18CV43

Fourth Semester B.E. Degree Examination, Jan./Feb. 2023 Applied Hydraulics

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Discuss the stability of floating bodies with sketches. (06 Marks)
 - b. What is dimensional analysis? Explain Rayleigh's method of dimensional analysis.

(06 Marks)

c. The efficiency η of a fan depends on density ρ , dynamic viscosity μ of the fluid, angular velocity ω , diameter D of the rotor and discharge Q. Express η as

$$\eta = f \left[\frac{Q}{WD^3}, \frac{\mu}{\rho WD^2} \right] \tag{08 Marks}$$

OF

- 2 a. In the model test of a spillway, the discharge and velocity of flow over the model were 2.5 m³/sec and 1.5 m/sec respectively. Calculate the velocity and discharge over the prototype which is 36 times the model size. (06 Marks)
 - b. What is buoyancy? Explain how metacentric height is determined by theoretical method.

(10 Marks)

- c. Define the following terms:
 - (i) Model

(ii) Prototype

(iii) Model analysis

(iv) Hydraulic similitude

(04 Marks)

Module-2

3 a. Derive the Chezy's equation for uniform flow in open channel with usual notations.

(07 Marks)

- b. With neat sketches, differentiate between flow through pipes and flow through open channels. (05 Marks)
- c. A rectangular channel 5.5 m wide and 1.25 m depth has a slope of 1 in 900. Determine the discharge when Manning's N = 0.015. If it is desired to increase the discharge to a maximum by changing the size of the channel but keeping the same quantity of lining, determine the new dimensions and percentage increase in discharge. (08 Marks)

OR

- a. Define specific energy. Draw and explain specific energy curve. Also derive an expression for critical depth and critical velocity in rectangular channels. (09 Marks)
 - b. For a trapezoidal channel of most economical section, prove that:
 - (i) Half of top width = Length of one of the sloping sides
 - (ii) Hydraulic depth = $\frac{1}{2}$ × depth of flow. (07 Marks)
 - c. Find the critical depth and critical velocity of the water flowing through a rectangular channel of width 5m, when discharge is 15 m³/sec. (04 Marks)

Module-3

- 5 a. Explain the following terms with neat sketches: (i) Back water curve (ii) Afflux (05 Marks)
 - b. The depth of flow of water at a certain section of rectangular channel of 2m wide is 0.3 m. The discharge through the channel is 1.5 m³/sec. Determine whether the hydraulic jump will occur and if so find its height and loss of energy per kg of water. (07 Marks)
 - c. Define GVF and RVF. Derive an expression for GVF in an open channel flow. (08 Marks)

OR

- 6 a. With neat sketches give the classification of surface profiles in case of GVF. (10 Marks)
 - b. What is hydraulic jump? Derive an expression for depth of flow after jump in an open channel flow. (10 Marks)

Module-4

- a. Design a pelton wheel turbine required to develop 1471.5 KW power under a head of 160 m at 420 rpm. The overall efficiency may be taken as 85%. Assume C_V = 0.98, speed ratio φ = 0.46, jet ratio = 12.
 - b. What is impact of jet? Derive an expression for force excreted by jet on moving curved vane in the direction of jet. (08 Marks)
 - c. State Impulse Momentum equation. (02 Marks)

OR

- 8 a. Define turbine. Give its classification. Also explain heads and efficiencies of pelton turbine.
 - b. A jet of water having a velocity of 20 m/sec strikes a curved vane which is moving with velocity of 10 m/sec. The jet makes an angle of 20° with the direction of motion of vane at inlet and leaves at an angle of 130° to the direction of motion of vane at outlet. Calculate:
 - (i) Vane angles so that the water enters and leaves the vane without shock.
 - (ii) Work done per second per unit weight of water striking the vane. (10 Marks)

Module-5

- 9 a. Draw neat sketch of Kaplan turbine and explain its different parts. (06 Marks)
 - b. Derive an expression for minimum speed for starting a centrifugal pump. (06 Marks)
 - c. The impeller of a centrifugal pump having external and internal diameters 500 mm and 250 mm respectively, width at outlet 50 mm and running at 1200 rpm works against a head of 48 m. The velocity of flow through the impeller is constant and equal to 3 m/sec. The vanes are set back at an angle of 40° at outlet. Determine:
 - (i) Inlet vane angle
 - (ii) Work done by the impeller on water per second
 - (iii) Manometric efficiency

(08 Marks)

OR

10 a. Explain different types of draft tubes with neat sketches.

(06 Marks)

b. Explain heads and efficiencies of centrifugal pump.

(07 Marks)

- c. A reaction turbine works at 450 rpm under a head of 120 m. Its diameter at inlet is 1.2 m and the flow area is 0.4 m². The angles made by absolute and relative velocities at inlet are 20° and 60° respectively with the tangential velocity. Determine:
 - (i) The volume flow rate
 - (ii) The power developed

CMRIT LIBRARY
BANGALORE - 560 037 (07 Marks)

(iii) The hydraulic efficiency