2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractive. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

ITE OF

Sixth Semester B.E. Degree Examination, Jan./Feb. 2023

Operations Research

Max. Marks: 80

Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

BANDALONA. Define Operation Research.

(04 Marks)

Discuss basic components of LP model.

(04 Marks)

c. A computer company manufactures laptops and desktops that fetch total profit of Rs.700/and 500/- per unit respectively. Each unit of laptop takes 4 hours of assembly time and 2 hours of testing time while each unit of desktop requires 3 hours of assembly time and 1 hour for testing. In a given month the total number of hours available for assembly is 210 hours and for inspection is 90 hours. Formulate the problem as LPP in such a way that (08 Marks) the total profit is maximum.

OR

Describe the steps involved in the formulation of LPP. 2

(04 Marks)

Explain the terms: (i) Feasible solution (ii) unbounded solution b.

(04 Marks)

A company produces two types of leather belts A and B and their profits are 40 and 30 rupees respectively. Each belt of type A requires twice as much a time as required for B. Company can produce 1000 belts per day. Leather is sufficient only for 800 belts per day. Belt A requires fancy buckles, there are only 400 buckles per day. For B only 700 buckles per day are available. How should the company manufacturers the 2 types of belts in order to maximize overall profit? Solve using graphical method. (08 Marks)

Module-2

- Define with example: (i) Slack variable (ii) Surplus variable (iii) Basic feasible 3 (06 Marks) solution.
 - Solve the following LPP using simplex method:

$$Z_{\text{max}} = 3x_1 + 2x_2$$

Subjected to $x_1 + x_2 \le 40$

$$x_1 - x_2 \le 20$$

$$x_1 - x_2 \le 20$$
where $x_1, x_2 \ge 0$

(10 Marks)

a. Solve the following LPP using Big M method:

Minimize $z = 2x_1 + 3x_2$

Subjected to constraints $x_1 + 2x_2 \le 4$

$$x_1 + x_2 = 3$$
 and x_1 and $x_2 \ge 0$

$$x_1$$
 and $x_2 \ge 0$

(10 Marks)

Explain briefly two phase method. b.

(06 Marks)

Module-3

Explain the procedure of dual simplex method. 5

(06 Marks)

Use dual simplex method to solve the following LPP:

 $Minimize z = 2x_1 + x_2 + 3x_3$

Subjected to $x_1 - 2x_2 + x_3 \ge 4$

 $2x_1 + x_2 + x_3 \le 8$ and $x_1 - x_3 \ge 0$ with all variables non negative. (10 Marks)

OR

- Explain briefly: (i) Formulation of dual linear programming problem.
 - (ii) Unrestricted variables.

(06 Marks)

The dual simplex method to solve the following problem:

Maximize $z = -2x_1 - 3x_2$

Subjected to $x_1 + x_2 \ge 2$

$$2x_1 + x_2 \le 10$$

$$x_1 + x_2 \le 8$$

with x_1 and x_2 non negative.

(10 Marks)

Explain North-West corner method with an example.

(06 Marks)

Using Vogel's Approximation Method (VAM), solve the following transportation problem: Demand A

		Domana				
	D_1	D_2	D_3	y		
O_1	2	7	4	5		
O_2	3	3 4	8	8		
O_1 O_2 O_3 O_4	5	4	7	7		
O_4	1	6	2	14		
	8	8	18			

(10 Marks)

Explain different types of assignment problems.

(06 Marks)

Four new computers (C1, C2, C3, C4) are to be installed in a computer center. There are 5 vacant places (A, B, C, D and E) available. Because of limited space C2 cannot be placed at C. and C₃ cannot be placed at A. The assignment cost of the computers to the places is given below. Find the optimal assignment.

A	A	В	C	D	E
C_1	4	6	10	5	6
C_2	7	4	-	5	4
C_3	-	6	9	6	2
C_4	9	3	7	2	3

(10 Marks)

Module-5

Explain two person zero-sum game and non zero-sum game with example.

(06 Marks)

Solve the following game whose pay off matrix is,

Player B
$$\begin{array}{c|c}
 & \text{Player B} \\
\hline
 & 3 & -2 \\
 & 2 & 5
\end{array}$$

(10 Marks)

OR

List the applications of game theory. 10 a.

(04 Marks)

Explain min-max and max-min principle.

(04 Marks)

Distinguish between pure strategy and mixed stratergy.

(04 Marks) (04 Marks)

Explain the concept of dominance.

CMRIT LIBRARY

BANGALORE - 560 037