Tymes his

17EE35

Third Semester B.E. Degree Examination, Jan./Feb. 2023

Digital System Design

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Reduce the following function using K-Map technique:

 $f(A, B, C, D, E) = \sum m(1, 4, 8, 10, 11, 20, 22, 24, 25, 26) + \sum d(0, 12, 16, 17).$ (08 Marks)

- b. Design a combinational circuit which takes two, 2 bit binary numbers as its input and generates an output equal to 1, when the sum of the two numbers is odd. (06 Marks)
- c. With basic block diagram, explain the combinational logic circuit. Differentiate between CLC (Combinational Logic Circuits) and SLC (Sequential Logic Circuits). (06 Marks)

OR

2 a. Simplify the following using Quine Mc Cluskey method: $f(A, B, C, D) = \sum m(1, 2, 3, 5, 9, 12, 14, 15) + \sum d(4, 8, 11)$.

(08 Marks)

- b. Convert the following to its standard canonical form.
 - f(a, b, c, d) = (a + b + c) (b + d) (a + c) (b + c)

(06 Marks)

c. Reduce the following function using K map technique and implement using basic logic gates: $f(A, B, C, D) = \pi m(0, 2, 4, 10, 11, 14, 15)$. (06 Marks)

Module-2

- 3 a. Implement a full subtractor using an active high output 3:8 decoder. (07 Marks)
 - b. Write the condensed truth table for a 4 to 2 line priority encoder with a valid output where the highest priority is given to the highest bit position or input with highest index and obtain the minimal sum expressions for the outputs.

 (07 Marks)
 - c. With aid of a block diagram, clearly distinguish between a decoder and an encoder.

(06 Marks)

OR

- 4 a. Implement $f(a, b, c, d) = \sum m(0, 5, 7, 8, 9, 12, 15)$ using
 - i) 8:1 MUX with b, c, d as select lines.
 - ii) 4:1 MUX with a, d as select lines

(08 Marks)

b. Design a 1 bit magnitude comparator.

(06 Marks)

Write a short note on look ahead carry adder.

(06 Marks)

Module-3

5 a. Draw the Master and slave outputs Q and Q' shown in Fig. Q.5(a).

(06 Marks)

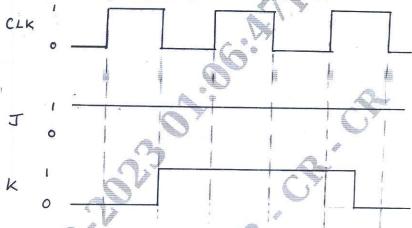


Fig.Q.5(a)

- b. Explain the switch debouncer using SR latch and otherwise with waveforms associated with switch debounser. (06 Marks)
- c. Design a 4 bit shift register using positive edge triggered D flip flops to operate as indicated in the table below:

	_ 1	able 5(c)
Mode Select		Register operation
S	S_0	
0	0	Circular shift left
# 0	1	Clear
1	0	Complement
1	1	Circular shift right

CMRIT LIBRARY
BANGALORE - 560 037

OR

6 a. Design a synchronous Mod-6 counter using SR flip-flops.

(08 Marks)

b. Draw and explain twisted ring counter in detail.

(06 Marks)

c. Differentiate between Asynchronous and Synchronous counter.

(06 Marks)

Module-4

7 a. Explain Mealy model and Moore model in detail.

(08 Marks)

b. Draw state diagram for circuit shown in Fig.Q.7(b).

(12 Marks)

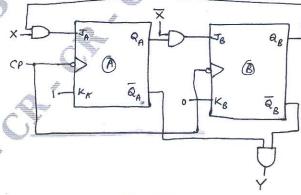


Fig.Q.7(b)

OR

- 8 a. Design a counter with the sequence 12, 10, 6, 5, 8, 2, 4, 13, 11, 12,.... using T flip-flops.
 (10 Marks)
 - b. Implement a sequential circuit for state diagram shown in Fig.Q.8(b) using D flip-flops.
 (10 Marks)

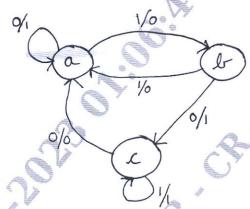


Fig.Q.8(b)

Module-5

9 a. Discuss different operators used in VHDL.

nil. (10 Marks)

- b. Explain the VHDL scalar data types of detail.
 - OR
- 10 a. Write a dataflow description (in both VHDL and verilog) for a full adder with active high enable. Draw the truth table and derive the Boolean expression, and verify the circuit.

(10 Marks)

b. Implement a 4 × 1 multiplexer using VHDL code and also verilog.

(10 Marks)

(10 Marks)