CBCS SCHEWE

USN ITE OF

Third Semester B.E. Degree Examination, Jan./Feb. 2023 **Engineering Electromagnetics**

Max. Marks: 100

ote: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

BANGALORE State and explain Coulomb's law of force between two point charges in vector form. a.

(06 Marks)

- Q₁ and Q₂ are the point charges located at (0, -4, 3) and (0, 1, 1). If Q₁ is 2nC, determine Q₂ b. such that force on a test charge at (0, -3, 4) has no z-component. (07 Marks)
- Derive the expression for electric field intensity due to infinite line charge. (07 Marks)

OR

- Define electric field Intensity. Derive an expression for electric field intensity due to 'n' 2 a. number of point charges. (06 Marks)
 - Two uniform line charges of density 4n c/m and 6n c/m lie in x = 0 plane at y = +5m and b. -6m respectively. Find E at P(4, 0, 5)m.
 - Define Electric flux and Electric flux density. Determine the flux crossing $\phi = \pi/4$ half plane defined by $0 \le r \le 3$ and $2 \le z \le 4$, given that $\overline{D} =$ (07 Marks)

Module-

State and prove Maxwell's first equation. 3 a.

(06 Marks)

- Given that $\overline{D} = \frac{5r^2}{4} \overline{a_r} c/m^2$. Evaluate both sides of divergence theorem for the volume b. enclosed by r = 4m and $\theta = \pi/4$. (07 Marks)
- Determine the potential difference between two points due to a point charge at origin.

(07 Marks)

OR

State and explain Gauss's law.

(06 Marks)

- Given that $V = \frac{\cos 2\phi}{r}$ in free space
 - Find E at p(2, 30° , 1).
 - Find volume charge density at $A(0.5, 60^{\circ}, 1)$.

(07 Marks)

Find an expression establishing the relationship between electric field and potential gradient. (07 Marks)

Module-3

State and prove uniqueness theorem. 5 a.

(08 Marks)

- If the field of a region in space is given by $\overline{E} = 5\cos z$ \overline{a}_z v/m, is the region free of charge. b.
- Obtain the expression for magnetic field intensity at a point due to a current carrying straight conductor of finite length. (06 Marks)

1 of 2

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractive. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

6 a. State and prove Stoke's theorem.

(08 Marks)

- b. Discuss the concept of vector magnetic potential and derive an expression for it. (06 Marks)
- c. Given the vector magnetic potential $\overline{A} = x^2 \overline{a}_x + 2yz \overline{a}_y + (-x^2)\overline{a}_z$, find magnetic flux density. (06 Marks)

Module-4

- a. Derive an equation for magnetic force between two differential current elements. (06 Marks)
 - Define magnetization and permeability and explain with relevant expressions. (06 Marks)
 - c. Find the normal component of the field traversed from medium 1 to medium 2 having $\mu_{r_1} = 2.5$, $\mu_{r_2} = 4$ given that $\overline{H}_1 = -30\overline{a}_x + 50\overline{a}_y + 70\overline{a}_z \, v/m$ (08 Marks)

OR

8 a. State and explain Lorentz force equation.

(06 Marks)

b. Briefly explain the forces on magnetic materials.

(06 Marks)

- c. A current element $I_1 dl_1 = 10^{-4} \ \bar{a}_z$ Am is located at (2, 0, 0) and other element $I_2 dl_2 = 10^{-6} (\bar{a}_x 2\bar{a}_y + 3\bar{a}_z)$ Am is located at (-2, 0, 0). Both are in free space. Find:
 - i) Force exerted on $I_2 dl_2$ by $I_1 dl_1$
 - ii) Force exerted on I_1dl_1 by I_2dl_2 .

(08 Marks)

Module-5

- 9 a. What is uniform plane wave? Derive an expression of uniform plane wave travelling in free space. (07 Marks)
 - b. Starting from equation of Faraday's law, obtain the point form of Maxwell's equation. Concerning spatial derivative of \overline{E} and time derivative of \overline{H} or prove that $\nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$.

(07 Marks)

c. Given $\overline{H} = Hm e^{j(wt+\beta z)} \overline{a}_x A/m$ in free space. Find \overline{E} .

(06 Marks)

OR

10 a. State and prove Poynting's theorem.

(07 Marks)

- b. Define displacement current density starting from the equation of ampere's circuital law, derive $\nabla \times \overline{H} = \overline{J}_C + \overline{J}_D$. (07 Marks)
- c. Calculate the intrinsic impedance η , the propagation constant γ , and wave velocity ν for a conducting medium in which $\sigma = 58 \text{Ms/m}$, $\mu_r = 1$, $\epsilon_r = 1$ at a frequency of 100MHz.

(06 Marks)

