enth Semester B.E. Degree Examination, June/July 2023 **Machine Learning**

Max. Marks: 100

te: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 Define Machine Learning. Explain with examples, why Machine Learning is important.

(06 Marks)

- Describe the following problems with respect to Task, Performance and Experience.
 - A Checkers learning problem.
 - A Handwritten recognition learning problem.
 - A Robot driving learning problem.

(06 Marks)

Write FIND – S Algorithm and explain with example given below:

Example Sky		Air Temp	Humidity	Wind	Water	Forecast	Enjoy sport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2 🔏	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

(08 Marks)

2 Explain in detail the Inductive Bias of Candidate Elimination algorithm.

(08 Marks)

Write the Candidate Elimination algorithm and illustrate with example.

(12 Marks)

Module-2

Explain representation of decision tree with example. 3

(04 Marks)

Describe the ID3 Algorithm for decision tree learning with example. b.

(10 Marks)

What are issues in learning decision trees?

(06 Marks)

- Consider the following set of training examples:
 - What is entropy of this collection of training example with respect to the target function classification?
 - What is the information gain of a₂ and a₁ relative to these training examples?

Instance	1	2	3	4	5	6	7	8	9
a_1	T	T	T	F	F	F	F	T	F
a_2	T	T	F	F	T	T	F	F	T
Classification	/	+	-	+	-	-	-	+	-

(12 Marks)

Discuss Inductive Bias in Decision Tree Learning.

(08 Marks)

Module-3

Explain the concept of a Perceptron with a neat diagram. 5 a.

(08 Marks)

- Write a note on:
 - Perceptron training rule
- ii) Gradient descent and Delta rule.

(08 Marks)

Differentiate between Gradient Descent and Stochastic Gradient Descent.

(04 Marks)

1 of 2

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

	6	a. b.	Derive the Back Propagation Rule. Define Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypoth the relation for h _{MAP} and h _{ML} using Bayesian Theorem.	(10 Marks) nesis. Derive (10 Marks)
			the relation for hap and hal using Bayesian Pheorem.	(10 Marks)
			Module-4	
	7	a.	Explain Brute Force Bayes concept learning.	(06 Marks)
		b.	Discuss Maximum Likelihood and Least Square Error Hypothesis.	(06 Marks)
		C.	Describe the concept of MDL. Obtain the equation for h _{MDL} .	(08 Marks)
			OR	
	8	a.	Explain Naïve Bayes classifier with an example.	(10 Marks)
		b.	Explain the concept of EM Algorithm. Discuss what are Gaussian Mixtures.	(10 Marks)
			Module-5	
	9	a.	Define the following terms: i) Sample error ii) True error iii) Random variable	
			iv) Expected value v) Variance vi) Standard Deviation.	(12 Marks)
		b.	Explain K – Nearest Neighbor learning algorithm.	(08 Marks)
			CMRIT LIBRARY	
			OR RANCALORE - 560 037	THE SHOULD BUT IN
	10	a.	Explain Locally Weighted Linear Regression.	(06 Marks)
		b.	Write Reinforcement Learning problem characteristics. Explain the Q Function and Q Learning Algorithm assuming deterministic r	(06 Marks)
		C.	actions with example.	(08 Marks)
			detions with example.	(0000000)
			Se Vois Ci	
			1 000 0-	
		1	* * * * *	
		C		
			2 of 2	
			2 01 2	
		A		
		A	***** 2 of 2	