USN

Seventh Semester B.E. Degree Examination, June/July 2023

Power System Analysis - II

Time: Thrs:

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. With usual notations, derive an expression for formation of bus admittance matrix by singular transformation.

 (06 Marks)
 - b. Explain the classification of buses considered for load flow analysis. (06 Marks)
 - c. For the power system data given, determine the bus admittance matrix by singular transformation.

Element No.	Bus code	Impedance	Mutual impedance
1	1-2	0.6j	
2	1 – 3	0.5j	
3	$\sqrt{2} - 3$	0.5j	0.1j with element 1

(08 Marks)

OR

- 2 a. Explain the algorithm for Gauss-Seidel method of load flow analysis for both PQ and PV buses. (10 Marks)
 - b. Using Gauss Sedel method, determine the voltages after first iteration for the data given below:

$$y_{11} = y_{22} = y_{33} = 5 - 20j$$

 $y_{12} = y_{13} = y_{23} = -2.934 + 11.76j$

With reactive power limits $0 \le Q_3 < 1.5$ pu

Bus no. P Q V_i Remark

1 - - 1.04 Slack

2 0.5 1 1+j0 PQ

3 1.5 - 1.04 PV

(10 Marks)

Module-2

- 3 a. Explain with flow chart, Newton Raphson method of load flow analysis in polar coordinates. (10 Marks)
 - b. Determine the elements of Jacobian matrices J_1 and J_4 for the power system data given:

$$\mathbf{y}_{\text{bus}} = \begin{bmatrix} -15j & 10j & 5j \\ 10j & -15j & 5j \\ 5j & 5j & -10j \end{bmatrix} \quad \mathbf{V}_{1} \quad \mathbf{V}_{2} \quad \mathbf{V}_{3} \\ \mathbf{V} = [1+j0 \ 1.1+j0 \ 1+j0]$$
 (10 Marks)

OR

- 4 a. Stating all the assumption made, deduce Fast decoupled load flow model. (10 Marks)
 - b. Explain the different methods employed for control of voltage profile. (10 Marks)

Module-3

5 a. Explain the optimal generation scheduling considering transmission losses and derive equations. (10 Marks)

b. The incremental fuel costs in Rs/Mwhr for plant consisting of two units are

$$\frac{dC_1}{dP_{G_1}} = 0.25 P_{G_1} + 40$$

$$\frac{dC_2}{dP_{G_2}} = 0.3 P_{G_2} + 30$$

Assume that both units are operating at all times and load varies from 40MW to 250MW

- i) How will the load be shared for a load for 200mW
- ii) Determine saving in fuel cost in Rs/day for optimal scheduling of a total load of 250MW as compared to equal sharing of load between two units.

- Stating the assumptions made, derive transmission loss formula and hence obtain B-coefficient for a two plant system.
 - Compute the loss coefficient for the network shown in Fig Q6(b) using given data:

$$I_a = 1.0 - j0.15 \text{ pu}$$
 $Z_a = 0.02 + j0.15 \text{ pu}$

$$Z_a = 0.02 + j0.15 \,\mathrm{pu}$$

$$I_b = 0.5 - j0.1 pu$$

$$I_b = 0.5 - j0.1$$
pu $Z_b = 0.03 + j0.15$ pu

$$I_c = 0.2 - j0.05 pu$$
 $Z_c = 0.02 + j0.25 pu$

$$Z_0 = 0.02 + i0.25 \,\mathrm{pu}$$

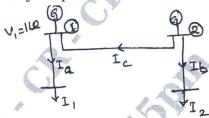


Fig Q6(b)

(10 Marks)

Module-4

- Explain problem formulation and solution procedure of optimal scheduling for hydro-(10 Marks) thermal plants.
 - Name the three major functions carried out in an energy control center for system security b. (10 Marks) assessment and explain.

OR

- Discuss: i) Power system security
- ii) Power system Reliability.

(10 Marks)

- Explain: i) Loss of load probability ii) Frequency and duration of curve (FAD)
- (10 Marks)

Module-5

Explain the modification of Z_{bus} when

CMRIT LIBRARY

- BANGALORE 560 037 i) a link is added between two old buses
- ii) a branch is added between a new bus and an old bus.

(10 Marks) (10 Marks)

Explain point-by point method of solving swing equation.

Form the Z_{bus} for the power system network data shown below:

Element no.	Bus code	$Z\Omega$
1	1 – 0	0.25Ω
2	2 – 1	0.10Ω
3	3-1	0.1Ω
4	2 - 0	0.25Ω

(10 Marks)

b. Explain Runge Kutta method of solving swing equation.

(10 Marks)