Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- With the help of neat diagram, explain the main blocks of an optical fibre communication link. (10 Marks)
 - Using Snell's law derive an expression for Numerical Aperture of a Fiber Optic Cable. (10 Marks)

OR

- Differentiate between 2
 - Single mode and Multi mode Fiber.
 - ii) Step Index and Graded Index multimode fiber.

(08 Marks)

b. Write short notes on Photonic Crystal Fiber.

- (06 Marks)
- c. Calculate NA, acceptance angle and critical angle of the fiber having $n_1 = 1.50$ and refractive index of clad $(n_2) = 1.45$. (06 Marks)

Module-2

Describe different types of attenuation mechanism in an optical fiber.

(06 Marks)

- Write short notes on: b.
 - Rayleigh Scattering
- ii) Mie Scattering.

(08 Marks)

- A continuous 12km long optical fiber link has a loss of 1.5 dB/km.
 - i) What is the maximum output power level that must be launched into the fiber to maintained as optical power level of $.3\pi w$ at receiver. (06 Marks)

OR

Explain the three types of Fiber splicing techniques with neat diagram.

(06 Marks) (06 Marks)

Describe Ferrate connectors and Fiber couplers.

(08 Marks)

Explain Mechanical Fiber misalignment with proper expression.

- 5 With proper energy diagram, explain the construction and working of Hetrojunction LED (10 Marks)
 - b. Describe Febry Perot Resonator.

(04 Marks)

The radiative and non – radiative life times of minority carrier in the active regions of a double hetrojunction LED are 60 ns and 90 ns respectively. Determine the total carrier recombination time and optical power generated internally if peak emission wavelength is 870 n m and drive current is 40 mA. (06 Marks)

- Explain the working principle of APD photodetector with neat diagram. (08 Marks)
 - Explain the comparison between LED and Laser Diode.

(06 Marks)

Derive the expression for quantum efficiency and responsivity of photodetector. (06 Marks)

1 of 2

(10 Marks)

Local Area Network.

Module-4 Derive an expression for different noise sources in an optical receiver. (10 Marks) Discuss the different types of pre – amplifiers in optical receiver. (04 Marks) A digital fiber optic line operating at 850nm requires a maximum BER of 10⁻⁹. Calculate (06 Marks) ii) Minimum incident power. i) Minimum energy E OR Describe the operational principle of WDM with typical network containing various type of 8 (10 Marks) optical amplifier. Explain EDFA Architecture with neat energy level diagram. (10 Marks) Module-5 With reference to a public network, explain the network architecture with optical fibers. (10 Marks) With reference to neat diagram, describe the features of wavelength - routing architecture. (05 Marks) (05 Marks) Explain MEMS Technology. Write short notes on: 10 ii) Optical Switching network. (10 Marks) Asynchronous transfer mode

Explain:

Multiprotocol Label Switching (MPLS)